% vim: tw=50 % 31/01/2022 10AM \ul{Question}: Given $\bf{F}$, how do we know if its conservative? \myskip \ul{Answer}: There is a check. If $F_i = \pfrac{\phi}{x^i}$ then \[ \pfrac{F_i}{x^i} = \frac{\partial^2 \phi}{\partial x^i \partial x^j} = \pfrac{F_j}{x^i} \qquad \forall\,\, i, j .\] This is a necessary condition. We will later see that this is also a sufficient condition (if $\bf{F}$ is everywhere well defined). \begin{example*} \[ \bf{F} = (3x^2y \sin z, x^3 \sin z, x^3y \cos z) .\] Check: \[ \partial_1 F_2 = 3x^2 \sin z = \partial_2 F_1 \] \[ \partial_1 F_3 = 3x^2y \cos z = \partial_3 F_1 \] \[ \partial_2 F_3 = x^3 \cos z = \partial_3 F_2 .\] Indeed $\bf{F} = \nabla \phi$ with $\phi = x^3 y \sin z$, so $\int_C \bf{F} \cdot \dd \bf{x}$ depends only on the end points of $C$. \end{example*} \subsubsection*{Exact Differentials} Given a function $\phi(\bf{x})$, the \emph{differential} is \[ \dd \phi = \pfrac{\phi}{x^i} \dd x^i = \nabla \phi \cdot \dd \bf{x} .\] Given a vector field $\bf{F}$, the object $\bf{F} \cdot \dd \bf{x}$ is \emph{exact} if it can be written as \[ \bf{F} \cdot \dd \bf{x} = \dd \phi \] \subsubsection*{An Application} The trajectory $\bf{x}(t)$ of a particle is governed by Newton's second law \[ m \ddot{\bf{x}}(t) = \bf{F}(\bf{x}) \] We define the kinetic energy \[ k = \half m \dot{\bf{x}}^2 \] This changes over time as \begin{align*} k(t_2) - k(t_1) &= \int_{t_1}^{t_2} \dfrac{k}{t} \dd t \\ &= \int_{t_1}^{t_2} m \dot{\bf{x}} \cdot \ddot{\bf{x}} \dd t \\ &= \int_{t_1}^{t_2} \bf{F} \cdot \dot{\bf{x}} \dd t \\ &= \int_C \bf{F} \cdot \dd \bf{x} \end{align*} This is called the \emph{work done}. For conservative forces \[ \bf{F} = -\nabla V \] Then \[ k(t_2) - k(t_1) = \int_C \bf{F} \cdot \dd \bf{x} = -V(t_2) + V(t_1) \] \[ \implies \bf{F}(t) = k(t) + V(t) = \text{constant} .\] \subsubsection*{A Subtlety} Consider \[ \bf{F} = \left( -\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right) \] Check \[ \partial_x F_y = \partial_y F_x = \frac{y^2 - x^2}{x^2 + y^2} \] and indeed $\bf{F} = \nabla \phi$ with $\phi = \tan^{-1} (y / x)$. Now integrate $\bf{F}$ around \[ \bf{x}(t) = (R \cos t, R\sin t) \qquad 0 \le t < 2\pi \] \begin{align*} \oint_C \bf{F} \cdot \dd \bf{x} &= \int_0^{2\pi} \bf{F}\ \cdot \dfrac{\bf{x}}{t} \dd t \\ &= \int_0^{2\pi} \left( -\frac{\sin t}{R} (-R \sin t) + \frac{\cos t}{R} (R \cos t) \right) \dd t \\ &= \int_0^{2\pi} \dd t \\ &= 2\pi \\ &\neq 0 \end{align*} Why?! \myskip It's because $\bf{F}$ isn't defined at the origin. Moreover, $\phi$ is discontinuous along the $\bf{x} = 0$ axis. \myskip Our previous claim that $\oint_C \bf{F} \cdot \dd \bf{x} = 0$ only holds when $\phi$ is a continuous function, or when $\bf{F}$ is defined inside $C$ in $\RR^2$. \newpage \section{Surfaces (and Volumes)} \subsection{Multiple Integrals} \subsubsection*{Area Integrals} Consider a region $D \subset \RR^2$. We want to integrate a scalar field $\phi(x, y)$ over $D$, i.e. \[ \int_D \phi \dd A \] ($\dd A = \dd x \dd y$ is the \emph{area element}). \begin{note*} It's sometimes written $\iint_D \phi \dd A$. \end{note*} \noindent Basic idea: \begin{center} \includegraphics[width=0.6\linewidth] {images/e0cc4b3282ff11ec.png} \end{center} \[ \int_D \phi(x) \dd A = \sum_n \phi(x_n) \delta A \]