% vim: tw=50 % 28/01/2022 10AM \begin{example*} Let $\bf{F}(\bf{x}) = (xe^y, z^2, xy)$. For $C_1$ let $\bf{x}(t) = (t, t, t)$, and for $C_2$ let $\bf{x}(t) = (t, t^2, t^3)$. We'll integrate from $(0,0,0)$ to $(1,1,1)$. \begin{center} \includegraphics[width=0.6\linewidth] {images/5ab7844482c311ec.png} \end{center} \ul{For $C_1$}: $\bf{F}(t) = (te^{t^2}, t^6, t^3)$ and $\dot{\bf{x}}(t) = (1, 2t, 3t^2)$. \begin{align*} \implies \int_{C_1} \bf{F} \cdot \dd \bf{x} &= \int_0^1 \dd t (te^{t^2} + 2t^7 + 3t^5) \\ &= \frac{1}{4} (1 + 2e) \end{align*} \ul{For $C_2$}: $\bf{F}(t) = (te^t, t^2, t^z)$ and $\dot{\bf{x}}(t) = (1, 1, 1)$. \begin{align*} \implies \int_{C_2} \bf{F} \cdot \dd \bf{x} &= \int_0^1 \dd t(te^t + 2t^2) \\ &= \frac{5}{3} \end{align*} \begin{note*} Answer depends on $C$. \end{note*} \end{example*} \noindent Sometimes we will integrate along a closed path $C$, with $\bf{a} = bf$. The line integral is the \emph{circulation} of $\bf{F}$ around $C$, denoted as \[ \oint_C \bf{F} \cdot \dd \bf{x} \] Sometimes we will have a \emph{piecewise smooth} curve $C = C_1 + C_2$, and then we define \[ \int_{C_1 + C_2} \bf{F} \cdot \dd \bf{x} = \int_{C_1} \bf{F} \cdot \dd \bf{x} + \int_{C_2} \bf{F} \cdot \dd \bf{x} .\] \begin{center} \includegraphics[width=0.6\linewidth] {images/137c1c3882c411ec.png} \end{center} The curve $-C$ is the curve $C$ but with the opposite orientation, so \[ \int_{-C} \bf{F} \cdot \dd \bf{x} = -\int_C \bf{F} \cdot \dd \bf{x} \] for example let $C = C_1 - C_2$ in our example. Then \[ \oint_C \bf{F} \cdot \dd \bf{x} = \int_{C_1} Fbf \cdot \dd \bf{x} - \int_{C_2} \bf{F} \cdot \dd \bf{x} = \frac{1}{4}(1 + 2e) - \frac{5}{3} \] \subsection{Conservative Fields} \ul{Question}: Do there exist $\bf{F}$ such that $\int_C \bf{F} \cdot \dd \bf{x}$ is independent of the path chosen between two fixed end points $\bf{a}$ and $\bf{b}$ i.e. \[ \int_{C_1} \bf{F} \cdot \dd \bf{x} = \int_{C_2} \bf{F} \cdot \dd \bf{x} ?\] (for all $C_1$ and $C_2$ with the same end points). \myskip Equivalently, considering $C = C_1 - C_2$, this would mean \[ \oint_C \bf{F} \cdot \dd \bf{x} = 0 \] for all closed paths $C$. \subsubsection*{The gradient} Consider a scalar field $\phi : \RR^n \to \RR$. The \emph{partial derivatives} are defined to be \[ \pfrac{\phi}{x^1} = \lim_{e \to 0} \frac{1}{e} [\phi(x^1 + e, x^2, \dots, x^n) - \phi(x^1, x^2, \dots, x^n)] \] and similar for $\pfrac{\phi}{x^2}$ etc. The function is differentiable if all $n$ partial derivatives exist. We write: \[ \partial_i \phi = \pfrac{\phi}{x^i} \qquad i = 1, \dots, n \] Also, it's not uncommon to stress which variables are held fixed by writing \[ \left( \pfrac{\phi}{x^1} \right)_{x^2, \dots, x^n} \] Let $\{\bf{e}_i\}$ be orthonormal basis of $\RR^n$. Then the \emph{gradient} of a scalar field is vector field, defined as \[ \nabla \phi = \pfrac{\phi}{x^i} \bf{e}_i \] \begin{note*} Sometimes the $\nabla$ is written with bold or underline. \end{note*} If we want to compute how $\phi$ changes in some direction $\hat{\bf{n}}$ with $|\hat{\bf{n}}| = 1$, then we compute the \emph{directional derivative} $\hat{\bf{n}} \cdot \nabla \phi$. \myskip This is maximised at any point $\bf{x}$ by picking $\hat{\bf{n}} \parallel \nabla \phi$. But this means that $\nabla \phi(\bf{x})$ points in the direction in which $\phi(\bf{x})$ increases most quickly. \subsubsection*{Back to Conservative Fields} A vector field $\bf{F}$ is called \emph{conservative} if it can be written as \[ \bf{F} = \nabla \phi \] for some $\phi$ called a \emph{potential}. \begin{claim*} \[ \oint_C \bf{F} \cdot \dd \bf{x} = 0 \,\,\forall\,\, C \] if and only if $\bf{F}$ is conservative. \end{claim*} \begin{proof} If $\bf{F} = \nabla \phi$ then along any \emph{open} curve $C$, parametrised by $\bf{x}(t)$, we have \begin{align*} \int_C \bf{F} \cdot \dd \bf{x} &= \int_C \nabla \phi \cdot \dd \bf{x} \\ &= \int_{t_a}^{t_b} \pfrac{\phi}{x^i} \dfrac{x^i}{t} \dd t \\ &= \int_{t_a}^{t_b} \dfrac{}{t} \phi(\bf{x}(t)) \dd t \\ &= \phi(\bf{x}(t_b)) - \phi(\bf{x}(t_a)) \end{align*} i.e. only depends on the end points. Conversely, suppose that \[ \oint_C \bf{F} \cdot \dd \bf{x} = 0 \] Let $\phi(\bf{0}) = 0$ and define \[ \phi(\bf{y}) = \int_{C(\bf{y})} \bf{F} \cdot \dd \bf{x} \] Then \begin{align*} \pfrac{\phi}{x^i} (\bf{y}) &= \lim_{e \to 0} \frac{1}{e} \left[ \int_{C(\bf{y} + e \bf{e}_i} \bf{F} \cdot \dd \bf{x} - \int_{C(\bf{y})} \right] \\ &= \lim_{e \to 0} \frac{1}{e} \int_{\bf{y}}^{\bf{y} + e \bf{e}_i} \bf{F} \cdot \dd \bf{x} \\ &= \lim_{e \to 0} \frac{1}{e} (eF_i) \\ &= F_i \end{align*} \end{proof}