% vim: tw=50 % 11/03/2022 10AM \subsubsection*{Tensor Fields} A tensor field over $\RR^3$ assigns a tensor $T_{i \cdots k}(\bf{x})$ to each point $\bf{x} \in \RR^3$. This generalises the vector field \[ \bf{F} : \RR^3 \to \RR^3 \] to \[ T : \RR^3 \to \RR^m \] with $m = \text{ \# components of the tensor}$. \myskip Tensor fields have one further operation: we can differentiate to build higher rank tensors. \begin{example*} If $\phi$ is a scalar field then \[ \nabla \phi = \pfrac{\phi}{x^i} \bf{e}_i \] is a vector field, and so \[ \pfrac{\phi}{x^i} \] transforms as a 1-tensor. \end{example*} \noindent More generally, if $T$ is a $p$-tensor field then we can construct a $(p + q)$-tensor field \[ X_{i_1 \cdots i_q j_1 \cdots j_p}(\bf{x}) = \pfrac{}{x^{i_1}} \cdots \pfrac{}{x^{i_q}} T_{j_1 \cdots j_p}(\bf{x}) \] To check that this is indeed a tensor, we use \[ x_i' = R_{ij} x_j \implies x_j = R_{ij} x_i' \] \[ \implies \pfrac{}{x_i'} = \pfrac{x_j}{x_i'} \pfrac{}{x_j} = R_{ij} \pfrac{}{x^j} \] ($\pfrac{}{x}$ transforms as a tensor.) \subsection{Physical Examples} The simplest examples of tensors are just matrices. \myskip In a material, an applied electric field $\bf{E}$ will give a current $\bf{J}$ is given by \[ J_i = \sigma_{ij} E_j \] where $\sigma_{ij}$ is the \emph{conductivity tensor}. This is the grown-up version of \emph{Ohm's law}. \begin{note*} In 3D, isotropic materials necessarily have \[ \sigma_{ij} = \sigma \delta_{ij} \] with $\sigma$ the conductivity. \\ In 2D (i.e. thin materials) then isotropy means \begin{align*} \sigma_{ij} &= \delta_{xx} \delta_{ij} + \delta_{xy} \eps_{ij} \\ &= \begin{pmatrix} \delta_{xx} & \delta_{xy} \\ -\delta_{xy} & \delta_{xx} \end{pmatrix} \end{align*} ($\sigma_{xy}$ is the \emph{Hall conductivity}). \end{note*} \noindent In Newtonian mechanics, a rigid body has \[ \bf{L} = I \bf{\omega} \] ($\bf{L}$ is angular momentum, $\bf{\omega}$ is angular velocity), where $I$ is the inertia tensor. If the body is made of particles of mass $m_a$, rotating as \[ \dot{\bf{x}}_a = \bf{\omega} \times \bf{x}_a \] then \begin{align*} \bf{L} &= \sum_a m_a \bf{x}_a \times \dot{\bf{x}}_a \\ &= \sum_a m_a \bf{x}_a \times (\bf{\omega} \times \bf{x}_a) \\ &= \sum_a m_a (|\bf{x}_a|^2 \bf{\omega} - (\bf{x}_a \cdot \bf{\omega}) \bf{x}_a) \\ \implies \bf{L} &= I_{ij} \omega_j \end{align*} with \[ I_{ij} = \sum_a m_a (|\bf{x}_a|^2 \delta_{ij} - (\bf{x}_a)_i (\bf{x}_a)_j) \] For a continuous object, \[ I_{ij} = \int_V \rho(\bf{x}) (|\bf{x}|^2 \delta_{ij} - x_i x_j) \dd V \] \begin{example*}[A Sphere] A ball of radius $R$ and density $\rho(r)$ has \begin{align*} I_{ij} &= \int_V \rho(r) (r^2 \delta_{ij} - x_i x_j) \dd V \\ &= \frac{8\pi}{3} \delta_{ij} \int_0^R \dd r \rho(r) r^4 \end{align*} \end{example*} \begin{example*}[A Cylinder] \begin{center} \includegraphics[width=0.6\linewidth] {images/d0d0728ea2c711ec.png} \end{center} \[ M = 2\pi a^2 L \rho \] In cylindrical polar, \[ x = r \cos \phi \qquad x = r \sin \phi \] \begin{align*} I_{33} &= \int_V \rho(x^2 + y^2) \dd V \\ &= \rho \int_0^{2\pi} \dd \phi \int_0^a \dd r \int_{-L}^{+L} \dd z \cdot r \cdot r^2 \\ &= \rho \pi L a^4 \\ I_{33} &= \int_V \rho (y^2 + z^2) \dd V \\ &= \rho \int_0^{2\pi} \dd \phi \int_0^a \dd r \int_{-L}{+L} r(r^2 \sin^2 \phi + z^2) \\ &= \rho \pi a^2 L \left( \half a^2 + \frac{2}{3} L^2 \right) \\ &= I_{22} &&\text{by symmetry} \\ I_{13} &= -\rho \int_V xz \dd V \\ &= -\rho \int_0^{2\pi} \dd \phi \int_0^a \dd r \int_{-L}^{+L} \dd z r^2 z \cos \phi \\ &= -\rho \int_0^{2\pi} \dd \phi \cos\phi C \\ &= 0 \end{align*} All other off diagonal entries vanish similarly, so for a cylinder \[ I = \mathrm{diag} \left( M \left( \frac{a^2}{4} + \frac{L^2}{3} \right), M \left( \frac{a^2}{4} + \frac{L^2}{3} \right), \half Ma^2 \right) \] \end{example*} \noindent For a general body, and a general choice of basis, $I_{ij}$ will not be diagonal. However, $I_{ij} = I_{ji}$ so there exist an $R \in \mathrm{SO}(3)$ such that \[ I' = RIR^\top = \mathrm{diag}(I_1, I_2, I_3) \] i.e. every body has a preferred set of axes such that $I$ is diagonal. \begin{center} \includegraphics[width=0.6\linewidth] {images/3926a064a2c911ec.png} \end{center} From $\bf{L} = I \bf{\omega}$, if the angular velocity, $\bf{\omega}$ is aligned with one of these axes then $\bf{L} \parallel \bf{\omega}$. Otherwise $\bf{L}$ is not parallel to $\bf{\omega}$ and this is the reason things wobble! (see classical dynamics).