% vim: tw=50 % 09/03/2022 10AM \myskip How do we know if a bunch of numbers $T$\dots form a tensor? \myskip If $T$ is a $(p + q)$-tensor then for every $q$-tensor $u$, \[ v_{i_1 \cdots i_p} = T_{i_1 \cdots i_p j_1 \cdots j_q} u_{j_1 \cdots j_q} \] is a $p$-tensor. \myskip Conversely, if $v$ is a $p$-tensor for every $q$-tensor $u$, then $T$ is a $(p + q)$-tensor. This is the \emph{quotient rule}. \begin{proof} Consider \[ u_{j_1 \cdots j_q} = c_{j_1} \cdots d_{j_q} \] By assumption \[ v_{i_1 \cdots i_p} = T_{i_1 \cdots i_p j_1 \cdots j_q} c_{j_1} \cdots d_{j_q} \] is a tensor, so \[ a_{i_1} \cdots b_{i_p} v_{i_1 \cdots i_p} = T_{i_1 \cdots i_p j_1 \cdots j_q} a_{i_1} \cdots b_{i_p} c_{j_1} \cdots d_{j_q} \] is a scalar, $\forall\,\, \bf{a}, \cdots \bf{b}, \bf{c}, \cdots \bf{d}$ hence $T$ must be a $(p + q)$-tensor. \end{proof} \subsubsection*{(Anti)-Symmetry} A tensor that obeys \[ T_{ijp \cdots q} = \pm T_{jip \cdots q} \] is said to be (anti)-symmetric in $i, j$ (anti for $-$). This is a basis independent statement: \begin{align*} T_{ijp \cdots q}' &= R_{ik} R_{jl} R_{pr} \cdots R_{qs} T_{klr \cdots s} \\ &= \pm R_{ik} R_{jk} R_{pr} \cdots R_{qs} T_{lkr \cdots s} \\ &= \pm T_{jip \cdots q}' \end{align*} If $T$ is (anti)-symmetric in all indices it is said to be \emph{totally (anti)-symmetric}. A totally anti-symmetric $p$-tensor in $\RR^n$ has ${n \choose p}$ independent components, and vanishes in $p > n$. \myskip In $\RR^3$, a 2-tensor $T_{ij}$ decomposes as \[ S_{ij} = \half (T_{ij} + T_{ij}) \] \[ A_{ij} = \half (T_{ij} - T_{ji}) \] and $S_{ij}$ further decomposes as \[ S_{ij} = P_{ij} + \frac{1}{3} Q \delta_{ij} \] where $P_{ij}$ is traceless (i.e. $P_{ii} = 0$) and the trace of $S_{ij}$ is $Q$. \myskip In $\RR^3$ we have another invariant tensor $\eps_{ijk}$ (see below) and we can write \[ A_{ij} = \eps_{ijk} B_k \iff B_k \half \eps_{klm} A_{lm} \] So a $3 \times 3$ matrix can be written as \[ T_{ij} = P_{ij} + \eps_{ijk} B_k \frac{1}{3} Q \delta_{ij} \] with $P$, $B$ and $Q$ are themselves tensors. \subsubsection*{Invariant Tensors} A tensor that obeys \[ T_{i_1 \cdots i_p}' = R_{i_1j_1} \cdots R_{i_pj_p} T_{j_1 \cdots j_p} = T_{i_1 \cdots i_p} \] for all $R$ is called an \emph{invariant tensor} or is said to be \emph{isotropic}. \myskip Any rank 0 tensor is isotropic. There are no rank 1 isotropic tensors. There is a rank 2, and in $\RR^3$, a rank 3 invariant tensor: \begin{itemize} \item $\delta_{ij}$ with $\delta_{ij}' = R_{ik} R_{jl} \delta_{kl} = \delta_{il}$ \item $\eps_{ijk}$ with \begin{align*} \eps_{ijk}' &= R_{il} R_{jm} R_{kn} \eps_{lmn} \\ &= (\det R) \eps_{ijk} \\ &= \eps_{ijk} \end{align*} \end{itemize} \begin{claim*} The only isotropic tensors in $\RR^3$ of rank $1 \le p \le 3$ are \[ T_{ij} = \alpha \delta_{ij} \] and \[ T_{ijk} = \beta \eps_{ijk} \] with $\alpha, \beta$ constant. \end{claim*} \begin{proof} Look for a rank 1 tensor. Must have \[ T_i' = R_{ij} T_j = T_i \] for \[ R_{ij} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] hence $T_1' = -T_1$ and $T_2' = -T_2$ so $T_1 = T_2 = 0$. A similar argument gives $T_3 = 0$. \myskip Look for a rank 2 tensor: \[ T_{ij}' = \tilde{R}_{ik} \tilde{R}_{jl} T_{kl} = T_{ij} \] with \[ \tilde{R}_{ij} = \begin{pmatrix} 0 & +1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ($\frac{\pi}{2}$ rotation about $z$-axis) This gives $T_{13}' = T_{23}$ and $T_{23}' = -T_{13}$ hence $T_{13} = T_{23} = 0$. Also $T_{11}' = T_{22}$. Similar arguments show that $T_{ij} = 0$ for $i \neq j$ and $T_{11} = T_{22} = T_{33} = \alpha$ \[ \implies T_{ij} = \alpha \delta_{ij} \] For rank 3, \[ T_{ijk}' = R_{il} R_{jp} R_{kq} T_{lpq} = T_{ijk} \] Use \[ R = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & +1 \end{pmatrix} \implies T_{133}' = -T_{133}, T_{111}' = -T_{111} \] $\implies T_{ijk} = 0$ unless $i, j, k$ distinct. Use $R = \tilde{R}$ to show that $T_{123}' = -T_{213}$ \[ \implies T_{ijk} = \beta \eps_{ijk} \] \end{proof} \myskip All higher rank invariant tensors in $\RR^3$ are built from $\eps_{ijk}$ and $\delta_{ij}$, for example isotropic rank 4 tensor has the most general form \[ T_{ijkl} = \alpha \delta_{ij} \delta_{kl} + \beta \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk} \] for $\alpha, \beta, \gamma$ some constants. \subsubsection*{Invariant Integrals} We can sometimes use this to do integrals, for example \[ T_{ij \cdots k} = \int_V f(r) x_i x_j \cdots x_k \dd V \] ($V$ is a spherically symmetric region and $r = |\bf{x}|$). Under a rotation \begin{align*} T_{ij \cdots k}' &= R_{ip} R_{jq} \cdots R_{kr} T_{pq \cdots r} \\ &= \int_V f(r) x_i' x_j' \cdots x_k' \dd V \end{align*} ($x_i' = R_{ip} x_p$). Change variables to $x'$. Both $r = |\bf{x}|$ and $V$ are invariant \[ \implies T_{ij \cdots k}' = T_{ij \cdots k} \] so must be proportional to an invariant tensor. \begin{example*} Consider the integral over 3D ball of radius $R$: \[ T_{ij} = \int_V \rho(r) x_i x_j \dd V \] Necessarily $= \alpha \delta_{ij}$ for some $\alpha$. Take the trace: \[ \implies \int_V \rho(r) r^2 \dd V = 3\alpha \] ($\delta_{ii} = 3$) \[ \implies T_{ij} = \frac{1}{3} \delta_{ij} \int_V \rho(r) r^2 \dd V \] \end{example*}