% vim: tw=50 % 25/02/2022 10AM \begin{proof}[of Stokes' Theorem] First show that Stokes $\implies$ Green. Consider \[ \bf{F} = (P(x, y), Q(x, y), 0) \] Take a flat surface $S$ in $z = 0$ plane. Then \[ \int_S \nabla \times \bf{F} \cdot \bf{\dd s} = \int_S \left( \pfrac{Q}{x} - \pfrac{P}{y} \right) \dd s \] and \[ \int_C \bf{F} \cdot \bf{\dd x} = \int_C P \dd x + Q \dd y \] This is Green's theorem in the plane. \myskip Now we show that Green $\implies$ Stokes. Let $\bf{x}(u, v)$ be the parametrised surface $S$ and $\bf{x}(u(t), v(t))$ be the parametrise boundary $C = \partial S$. \begin{center} \includegraphics[width=0.6\linewidth] {images/df6740cc99ba11ec.png} \end{center} Let $A$ be the associated area in $(u, v)$ plane and $\partial A$ the boundary. Now \begin{align*} \oint_C \bf{F} \cdot \bf{\dd x} &= \int_C \bf{F} \cdot \left( \pfrac{\bf{x}}{u} \dd u + \pfrac{\bf{x}}{v} \dd v \right) \\ &= \int_{\partial A} F_u \dd u + F_v \dd v \end{align*} with $F_u = \bf{F} \cdot \pfrac{\bf{x}}{u}$ and $F_v = \bf{F} \cdot \pfrac{\bf{x}}{v}$. \[ \implies \oint_C \bf{F} \cdot \bf{\dd x} = \int_A \left( \pfrac{F_v}{u} - \pfrac{F_u}{v} \right) \dd A \] by Green's Theorem. Now \begin{align*} \pfrac{F_v}{u} &= \pfrac{}{u} \left( \bf{F} \cdot \pfrac{\bf{x}}{v} \right) \\ &= \pfrac{}{u} \left( F_i \pfrac{x^i}{v} \right) \\ &= \pfrac{F_i}{x^j} \pfrac{x^j}{u} \pfrac{x^i}{v} + F_i \frac{\partial^2 x^i}{\partial u \partial v} \end{align*} and \[ \pfrac{F_u}{v} = \pfrac{F_i}{x^j} \pfrac{x^j}{v} \pfrac{x^i}{u} + F_i \frac{\partial^2 x^i}{\partial u \partial v} \] \begin{align*} \implies \pfrac{F_v}{u} - \pfrac{F_u}{v} &= \pfrac{x^j}{u} \pfrac{x^i}{v} \left( \pfrac{F_i}{x^j} - \pfrac{F_j}{x^i} \right) \\ &= (\delta_{jk}\delta_{il} - \delta_{jl}\delta_{ik}) \pfrac{x^k}{u} \pfrac{x^l}{v} \pfrac{F_i}{x^j} \\ &= \eps_{jip} \eps_{pkl} \pfrac{x^k}{u} \pfrac{x^l}{v} \pfrac{F_i}{x^j} \\ &= (\nabla \times \bf{F}) \cdot \left( \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v} \right) \\ \implies \oint_C \bf{F} \cdot \bf{\dd x} &= \int_A (\nabla \times \bf{F}) \cdot \left( \pfrac{\bf{x}}{u} \times \pfrac{\bf{x}}{v} \right) \dd u \dd v \\ &= \int_S (\nabla \times \bf{F}) \cdot \bf{\dd s} \end{align*} \end{proof} \subsubsection*{An Application: Magnetic Fields} One of the Maxwell equations reads \[ \nabla \times \bf{B} = \mu_0 \bf{J} \] where $\bf{B}$ is magnetic field and $\bf{J}$ is current density. This is known as Amp\`ere's law. \begin{center} \includegraphics[width=0.6\linewidth] {images/2b008fe299bc11ec.png} \end{center} \begin{align*} \int_S \nabla \times \bf{B} \cdot \bf{\dd s} &= \int_C \bf{B} \cdot \bf{\dd x} \\ &= \int_S \mu_0 \bf{J} \cdot \bf{\dd s} \\ &= \mu_0 I \end{align*} where $I$ is total current. Parametrise $\bf{x} = \rho(\cos\phi, \sin\phi, 0)$ ($\rho$ is radius of $S$, $\phi \in [0, 2\pi)$). \[ \bf{t} = \pfrac{\bf{x}}{\phi} = \rho (-\sin\phi, \cos\phi, 0) \] Ansatz: $\bf{B}$ parallel to $\bf{t}$ everywhere, i.e. $\bf{B} = b(\rho)(-\sin\phi, \cos\phi, 0)$ \[ \implies \bf{B} \cdot \bf{t} = \rho b(\rho) \] and Maxwell tells us that \[ \oint_C \bf{B} \cdot \bf{\dd x} \int_0^{2\pi} \dd \phi \rho b(\rho) = 2pi \rho b(\rho) = \mu_0 I \] \[ \implies b(\rho) = \frac{\mu_0 I}{2\pi \rho} \] \[ \implies B(\bf{x}) = \frac{\mu_0 I}{2\pi \rho}(-\sin\phi, \cos\phi, 0) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/b130d92899bc11ec.png} \end{center} This is the magnetic field outside a current carrying wire. \newpage \section{Vector Calculus Equations} \subsection{Gravity and Electrostatics} Two particles with mass $m$, $M$ and charge $q$, $Q$, separated by a distance $r$, experience \begin{itemize} \item Newton's force: $\bf{F}(r) = -\frac{GMm}{r^2} \hat{\bf{r}}$ \item Coulomb force: $\bf{F}(r) = \frac{Qq}{4\pi \eps_0 r^2} \hat{\bf{r}}$ \end{itemize} It's useful to think of one particle with mass $m$, charge $q$, moving in the background of the other. \myskip Physically sensible if $m \ll M$, $q \ll Q$, write the force as \[ \bf{F}(\bf{x}) = m \bf{g}(\bf{x}) \qquad \text{and} \qquad \bf{F}(\bf{x}) = q \bf{E}(\bf{x}) \] where $\bf{g}$ and $\bf{E}$ are gravitational field and electric field respectively. \[ \bf{g}(\bf{x}) = -\frac{GM}{r^2} \hat{\bf{r}} \] \[ \bf{E}(\bf{x}) = \frac{Q}{4\pi \eps_0 r^2} \hat{\bf{r}} \] These fields obey following equations: \[ \int_S \bf{g} \cdot \bf{\dd s} = - 4\pi GM \] ($M$ is the mass inside $S$) \[ \int_S \bf{E} \cdot \bf{\dd s} = \frac{Q}{\eps_0} \] ($Q$ is the charge inside $S$).