% vim: tw=50 % 23/02/2022 10AM \subsection{Green's Theorem in the Plane} \begin{theorem*}[Green's Theorem] Let $P(x, y)$ and $Q(x, y)$ be smooth functions on $\RR^2$. Then \[ \int_A \left( \pfrac{Q}{x} - \pfrac{P}{y} \right) \dd A = \oint_C P \dd x + Q \dd y \] with $C = \partial A$ traversed anti-clockwise. \end{theorem*} \begin{proof} Let $\bf{F} = (Q, -P)$ so \[ \int_A \nabla \cdot \bf{F} \dd A = \int_A \left( \pfrac{Q}{x} - \pfrac{P}{y} \right) \dd A = \oint_C \bf{F} \cdot \bf{n} \dd s \] by 2D divergence theorem. \\ Parametrise $C$ by \[ \bf{x}(s) = (x(s), y(s)) \] so the tangent vector is \[ \bf{t} = (x'(s), y'(s)) \] and the normal is \[ \bf{n} = (y'(s), -x'(s)) \] so that $\bf{n} \cdot \bf{t} = 0$. \begin{center} \includegraphics[width=0.6\linewidth] {images/33bb969e999511ec.png} \end{center} If $s$ increases in an anti-clockwise direction, then $\bf{n}$ is outward pointing normal. \[ \bf{F} \cdot \bf{n} = Q \dfrac{y}{s} + P \dfrac{x}{s} \] \[ \implies \oint_C \bf{F} \cdot \bf{n} \dd s = \oint_C P \dd x + Q \dd y \] \end{proof} \begin{note*} We can also use this theorem when $C = \partial A$ has disconnected components. \begin{center} \includegraphics[width=0.6\linewidth] {images/ce988488999511ec.png} \end{center} The two line integrals across the gap cancel. \end{note*} \begin{example*} $P = x^2y$ and $Q = xy^2$. Integrate over \begin{center} \includegraphics[width=0.6\linewidth] {images/fb719954999511ec.png} \end{center} \begin{claim*} \[ \int_A (y^2 - x^2) \dd A = \oint_C x^2y \dd x + xy^2 \dd y \] \end{claim*} \begin{proof} This is Example Sheet 1, Question 9 (both sides are equal to $\frac{104}{105}a^4$). \end{proof} \end{example*} \subsection{Stokes Theorem} \begin{theorem*}[Stokes Theorem] Let $S$ be a smooth surface in $\RR^3$ with boundary $C = \partial S$. Then for a smooth vector field $\bf{F}(\bf{x})$ \[ \int_S \nabla \times \bf{F} \cdot \bf{\dd s} = \oint_C \bf{F} \cdot \bf{\dd x} \] \end{theorem*} \noindent To fix the orientation, if $\bf{n}$ is a normal to $S$ and $\bf{t}$ is tangent to $C$ then $\bf{t} \times \bf{n}$ should point out of $S$. \begin{center} \includegraphics[width=0.6\linewidth] {images/a03bc0b8999611ec.png} \end{center} If $\bf{n}$ points towards you, then orientation of $C$ is anti-clockwise. \begin{note*} Stokes theorem gives a meaning to curl. For suitably small $S$, $\nabla \times \bf{F} \approx \text{ constant}$ and \[ \int_S \nabla \times \bf{F} \cdot \bf{\dd s} \approx A \bf{n} \cdot (\nabla \times \bf{F}) \] where $A$ is the area of $S$ and $\bf{n}$ is the normal to $S$. \[ \implies \bf{n} \cdot (\nabla \times \bf{F}) = \lim_{A \to 0} \frac{1}{A} \int_C \bf{F} \cdot \bf{\dd x} \] i.e. curl in direction $\bf{n}$ is circulation in plane normal to $\bf{n}$. This also gives some intuition for Stokes' theorem: \begin{center} \includegraphics[width=0.6\linewidth] {images/575b0c9a999711ec.png} \end{center} At each point in $S$, $\nabla \times \bf{F}$ is circulation. But this cancels in the interior, leaving only the boundary contribution. \end{note*} \begin{corollary*} Irrotational $\implies$ conservative: \[ \nabla \cdot \bf{F} = 0 \implies \oint_C \bf{F} \cdot \bf{\dd x} = 0 \qquad \forall \text{ closed $C$} \] \[ \implies \bf{F} = \nabla \phi \] from Section 1. \end{corollary*} \begin{example*} $S$ is a hemispherical cap of radius $R$ with $0 \le \theta \le \alpha$. \begin{center} \includegraphics[width=0.3\linewidth] {images/fc342fee999711ec.png} \end{center} \[ \bf{F} = (0, xz, 0) \] \[ \implies \nabla \times \bf{F} = (-x, 0, z) \] and \[ \int_S \nabla \times \bf{F} \cdot \bf{\dd s} = \pi R^3 \cos \alpha \sin^2 \alpha \] from Section 2. \\ For the line integral, let \[ \bf{x}(\phi) = R(\sin\alpha \cos\phi, \sin\alpha\sin\phi, \cos\alpha) \] where $\phi \in [0, 2\pi)$. \[ \implies \bf{\dd x} = R(-\sin\alpha \sin\phi, \sin\alpha \cos\phi, 0) \dd \phi \] and \begin{align*} \oint_C \bf{F} \cdot \bf{\dd x} &= \int_0^{2\pi} \dd \phi Rxz \sin\alpha \cos\phi \\ &= \int_0^{2\pi} \dd \phi R^3 \sin^2\alpha \cos\alpha \cos^2 \phi \\ &= \pi R^3 \sin^2 \alpha \cos\alpha \end{align*} \end{example*} \begin{example*} Cone $z^2 = x^2 + y^2$ and $a \le z \le b$, $a, b > 0$. \begin{center} \includegraphics[width=0.6\linewidth] {images/29057bd6999811ec.png} \end{center} surface is \[ \bf{x}(\rho, \phi) = (\rho\cos\phi, \rho\sin\phi, \rho) \] where $0 \le \phi < 2\pi$ and $a \le \rho \le b$. Tangent vectors: \[ \pfrac{\bf{x}}{\rho} = (\cos\phi, \sin\phi, 1) \] \[ \pfrac{\bf{x}}{\phi} = \rho(-\sin\phi, \cos\phi, 0) \] \[ \implies \bf{n} = \pfrac{\bf{x}}{\rho} \times \pfrac{\bf{x}}{\phi} = (-\rho\cos\phi, -\rho\sin\phi, \rho) \] (points inwards). \[ \implies \bf{\dd s} = \rho(-\cos\phi, -\sin\phi, 1) \dd \rho \dd \phi \] Again integrate $\bf{F} = (0, xz, 0)$ \begin{align*} \implies \nabla \times \bf{F} \cdot \bf{\dd s} &= (x\cos\phi + z) \rho \dd \rho \dd \phi \\ &= \rho^2(1 + \cos^2\phi) \dd \rho \dd \phi \\ \implies \int_S \nabla \times \bf{F} \cdot \bf{\dd s} &= \int_a^b \dd \rho \int_0^{2\pi} \dd \phi \rho^2 (1 + \cos^2\phi) \\ &= \pi(b^3 - a^3) \end{align*} Compare to line integral over $\partial S = C_b - C_a$. \end{example*}