% vim: tw=50 % 18/02/2022 10AM \newpage \section{Integral Theorems} \subsection{The Divergence Theorem} (Also known as Gauss' theorem). \begin{theorem*}[Gauss' Theorem] Given a smooth vector field $\bf{F}(\bf{x})$ over $\RR^3$ \[ \int_V \nabla \cdot \bf{F} \dd V = \int_S \bf{F} \cdot \bf{\dd S} \] with $S = \partial V$ and $\bf{\dd S} = \dd S \bf{n}$ is pointing outwards. \begin{center} \includegraphics[width=0.6\linewidth] {images/d302ad72927511ec.png} \end{center} \end{theorem*} \begin{note*} The divergence theorem gives intuition for the meaning of $\nabla \cdot \bf{F}$. \end{note*} \noindent In a suitably small volume, over which $\nabla \cdot \bf{F} \approx \text{constant}$, \[ \int_V \nabla \cdot \bf{F} \dd V = V \nabla \cdot \bf{F} (\bf{x}) \] \[ \implies \nabla \cdot \bf{F} = \lim_{V \to 0} \frac{1}{V} \int_{\partial V} \bf{F} \cdot \bf{\dd S} \] \[ \implies \text{divergence } = \text{ net flow into/out of region $V$} \] \[ \nabla \cdot \bf{F} > 0 \implies \text{ net flow out} \] \[ \nabla \cdot \bf{F} < 0 \implies \text{ net flow int} \] For example, MAxwell's equations tell us \[ \nabla \cdot \bf{B} = 0 \implies \text{magnetic field lines are continuous} \] \[ \nabla \cdot \bf{E} = \frac{\rho}{\eps_0} \implies \text{electric field lines are continuous when electric charge density $\rho(\bf{x}) = 0$} \] But when $\rho(\bf{x}) \neq 0$, the electric field can begin and end. \begin{center} \includegraphics[width=0.6\linewidth] {images/6a2cc07a927611ec.png} \end{center} \begin{example*} Let $V = \text{ solid hemisphere}$. \[ x^2 + y^2 + z^2 \le R^2 \] and $z \ge 0$. \[ \partial V = S_1 + S_2 \] \begin{center} \includegraphics[width=0.6\linewidth] {images/e5780442927611ec.png} \end{center} We'll integrate $\bf{F} = (0, 0, z + R)$ \[ \implies \nabla \cdot \bf{F} = 1 \] \[ \implies \int_V \nabla \cdot \bf{F} \dd V = \int_V \dd V = \frac{2}{3} \pi R^3 \] On $S^1$: \[ \bf{n} = \frac{1}{R} (x, y, z) \] \[ \implies \bf{F} \cdot \bf{n} = \frac{z(z + R)}{R} = R\cos\theta (\cos\theta + 1) \] (where $z = R\cos\theta$) \[ \implies \int_{S_1} \bf{F} \cdot \bf{\dd S} = \int_0^{2\pi} \dd \phi \int_0^{\pi/2} \dd \theta (R^2 \sin\theta) \times R\cos\theta (\cos\theta + 1) = \frac{5}{3} \pi R^3 \] On $S_2$, \[ \bf{n} = (0, 0, -1) \] \[ \implies \bf{F} \cdot \bf{n} = -R \] on $S_2$ \[ \implies \int_{S_2} \bf{F} \cdot \bf{\dd S} = (-R) \times \pi R^2 = -\pi R^3 \] \[ \implies \int_{S_1 + S_2} \bf{F} \cdot \bf{\dd S} = \frac{2}{3} \pi R^3 \] \end{example*} \begin{proof}[ of Divergence Theorem] First, a simple proof. Divide $V$ into cubes \begin{center} \includegraphics[width=0.6\linewidth] {images/9ebf7a16927711ec.png} \end{center} Flow of $\bf{F}$ through the $(y, z)$ plane is roughly \[ [F_x(x + \delta x, y, z) - F_x(x, y, z)] \delta y \delta z \approx \pfrac{F_x}{x} \delta x \delta y \delta z \] Do the same for the other sides \[ \implies \int_S \bf{F} \cdot \bf{\dd S} = \int_V \nabla \cdot \bf{F} \bf{\dd V} \] \end{proof} \myskip A concern: can we approximate the boundary with cubes? For example in 2d: \begin{center} \includegraphics[width=0.6\linewidth] {images/e9404f52927711ec.png} \end{center} \begin{proof}[ (better proof)] First note that \[ \int_V \nabla \cdot \bf{F} \dd V = \int_\partial V \bf{F} \cdot \bf{\dd S} \] holds in and $\RR^n$. We start by proving the following: \begin{lemma*} 2d divergence theorem: \[ \int_D \nabla \cdot \bf{F} \dd A = \int_C \bf{F} \cdot \bf{n} \bf{\dd S} \] with $C = \partial D$. \begin{center} \includegraphics[width=0.6\linewidth] {images/59c2158a927811ec.png} \end{center} \end{lemma*} \begin{proof}[ of lemma] \[ \int_D \nabla \cdot \bf{F} \dd A = \int_X \dd x \int_{y_-(x)}^{y_+(x)} \dd y \pfrac{F}{y} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/a32eac88927811ec.png} \end{center} For now assume $D$ is convex so that the $\int \dd y$ is over a single interval, rather than \begin{center} \includegraphics[width=0.6\linewidth] {images/c756fb32998611ec.png} \end{center} Then \[ \int_D \nabla \cdot \bf{F} \dd A = \int_X \dd x (F(x, y_+(x)) - F(x, y_-(x))) \] Next we change $\int \dd x$ to $\int\ dd s$, where $s = \text{ arc length}$. Zoom in to the top curve $C_+$ \begin{center} \includegraphics[width=0.6\linewidth] {images/08a5c974998711ec.png} \end{center} The normal makes an angle \[ \cos\theta = \hat{\bf{y}} \cdot \bf{n} \] and \[ \delta x = \cos\theta \delta s = \hat{\bf{y}} \cdot \bf{n} \delta s \] along $C_+$. Similarly, along $C_-$, \[ \delta x = \hat{\bf{y}} \cdot \bf{n} \delta s \] \begin{align*} \int_D \nabla \cdot \bf{F} \dd A &= \int_X \dd s \left( \bf{n} \cdot \bf{F} (x, y_+(x)) + \bf{n} \cdot \bf{F}(x, y_-(x))) \right) \\ &= \int_{C_+} \bf{F} \cdot \bf{n} \dd s + \int_{C_-} \bf{F} \cdot \bf{n} \dd s \\ &= \int_C \bf{F} \cdot \bf{n} \dd s \end{align*} with $C = C_+ + C_-$. Finally if $D$ is not convex, then just decompose $C$ into more pieces. \end{proof} Back to 3D theorem. \\ We use the same strategy. Take $\bf{F} = F(\bf{x}) \hat{\bf{z}}$. Then \[ \int_V \nabla \cdot \bf{F} \dd V = \int_D \dd A \int_{z_-(x, y)}^{z_+(x, y)} \dd z \pfrac{F}{z} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/b7cc85c8998711ec.png} \end{center} \[ \int_V \nabla \cdot \bf{F} \dd V = \int_D \dd A [F(x, y, z_+(c, y)) - F(x, y, z_-(x, y))] \] with limits $z_\pm$ the upper / lower surface of $V$. \\ Now convert $\int \dd A$ into the surface integral over $S = \partial V$. This again includes an angle $\cos \theta = \pm \bf{n} \cdot \hat{\bf{z}}$ with $\bf{n}$ normal to $S$. This gives the result. \end{proof}