% vim: tw=50 % 16/02/2022 10AM \subsection{Orthogonal Curvilinear Coordinates} We want to find expressions for $\nabla$ in different coordinates systems. \myskip Introduce coordinates $u, v, w$ so \[ \bf{x} = \bf{x}(u, v, w) \] A change of $(u, v, w)$ changes the point $\bf{x}$ to $\bf{x} + \dd \bf{x}$ \[ \dd \bf{x} = \pfrac{\bf{x}}{u} \dd u + \pfrac{\bf{x}}{v} \dd v + \pfrac{\bf{x}}{w} \dd w \] (where $\pfrac{\bf{x}}{u} \dd u$ is the tangent vector to $v, w = \text{constant}$) These are good coordinates at a point provided \[ \pfrac{\bf{x}}{u} \cdot \left( \pfrac{\bf{x}}{v} \times \pfrac{\bf{x}}{w} \right) \neq 0 \] If the three tangent vectors are mutually orthogonal then $(u, v, w)$ are said to be \emph{orthogonal curvilinear}. \myskip For such coordinates, we introduce normalised tangent vectors, i.e. \begin{align*} \pfrac{\bf{x}}{u} &= h_u \bf{e}_u \\ \pfrac{\bf{x}}{v} &= h_v \bf{e}_v \\ \pfrac{\bf{x}}{w} &= h_w \bf{e}_w \end{align*} with $h_u, h_v, h_w > 0$ and $\bf{e}_u, \bf{e}_v, \bf{e}_w$ are a right-handed orthonormal basis \[ \bf{e}_u \times \bf{e}_v = \bf{e}_w \] so \[ \dd \bf{x} = h_u \bf{e}_u \dd u + h_v \bf{e}_v \dd v + h_w \bf{e}_w \dd w \] \[ \implies \dd \bf{x}^2 = h_u^2 \dd u^2 + h_v^2 \dd v^2 + h_w^2 \dd w^2 \] (scale factors tell us the change in length) \subsubsection*{Examples} \begin{enumerate}[(1)] \item Cartesian coordinates $\bf{x} = (x, y, z)$ with $h_y = h_v = h_w = 1$ and \[ \bf{e}_x = \hat{\bf{x}}, \qquad \bf{e}_y = \hat{\bf{y}}, \qquad \bf{e}_z = \hat{\bf{z}} \] \item Cylindrical polar coordinates have \[ \bf{x} = (\rho \cos\phi, \rho \sin\phi, z) \] ($\rho \ge 0$, $\phi \in [0, 2\pi)$) or $\rho = \sqrt{x^2 + y^2}$ and $\tan\phi = \frac{y}{x}$. \begin{align*} \bf{e}_\rho &= \hat{\bf{\rho}} = (\cos\phi, \sin\phi, 0) \\ \bf{e}_\phi &= \hat{\bf{\phi}} = (-\sin\phi, \cos\phi, 0) \\ \bf{e}_z &= \hat{\bf{z}} = (0, 0, 1) \end{align*} and $h_\rho = h_z = 1$ and $h_\phi = \rho$. \begin{center} \includegraphics[width=0.6\linewidth] {images/c61bc4da8ff111ec.png} \end{center} \item Spherical polar coordinates have \[ \bf{x} = (r\sin\theta \cos\phi, r\sin\theta \sin\phi, r\cos\theta) \] with $r \ge 0$, $\theta \in [0, \pi]$, $\theta \in [0, 2\pi)$. \[ \implies r = \sqrt{x^2 + y^2 + z^2}, \qquad \tan\theta = \frac{\sqrt{x^2 + y^2}}{z}, \qquad \tan\phi = \frac{y}{x} \] We have \begin{align*} \bf{e}_r &= \hat{\bf{r}} = (\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta) \\ \bf{e}_\theta &= \hat{\bf{\theta}} = (\cos\theta \cos\phi, \cos\theta \sin\phi, -\sin\theta) \\ \bf{e}_\phi &= \hat{\bf{\phi}} = (-\sin\phi, \cos\phi, 0) \end{align*} with $h_r = 1$, $h_\theta = r$, $h_\phi = r\sin\theta$. \begin{center} \includegraphics[width=0.6\linewidth] {images/ed12ce088ff111ec.png} \end{center} \end{enumerate} \subsubsection*{Grad} If we shift $\bf{x} \to \bf{x} + \dd \bf{x}$ then a scalar field $f(\bf{x})$ changes as \[ \dd f = \nabla f \cdot \dd \bf{x} \] In a general coordinate system \begin{align*} \dd f &= \pfrac{f}{u} \dd u + \pfrac{f}{v} \dd v + \pfrac{f}{w} \dd w \\ &= \nabla f \cdot (h_u \bf{e}_u \dd u + h_v \bf{e}_v \dd v + h_w \bf{e}_w \dd w) \\ \implies \nabla f &= \frac{1}{h_u} \pfrac{f}{u} \bf{e}_u + \frac{1}{h_v} \pfrac{f}{v} \bf{e}_v + \pfrac{1}{h_w} \pfrac{f}{w} \bf{e}_w \end{align*} using $\bf{e}_u \cdot \bf{e}_v = 0$, etc. \\ For example in cylindrical polar \begin{flashcard}[cylindrical-grad] \prompt{Gradient in cylindrical polar} \[ \nabla f = \cloze{\pfrac{f}{\rho} \hat{\bf{\rho}} + \frac{1}{\rho} \pfrac{f}{\phi} \hat{\bf{\phi}} + \pfrac{f}{z} \hat{\bf{z}}} \] \end{flashcard} In spherical polar \begin{flashcard}[spherical-grad] \prompt{Gradient in spherical polar} \[ \nabla f = \cloze{\pfrac{f}{r} \hat{\bf{r}} + \frac{1}{r} \pfrac{f}{\theta} \hat{\bf{\theta}} + \frac{1}{r\sin\theta} \pfrac{f}{\phi} \hat{\bf{\phi}}} \] \end{flashcard} \subsubsection*{Div and Curl} In general coordinates we have \[ \nabla = \frac{1}{h_u} \bf{e}_u \pfrac{}{u} + \frac{1}{h_v} \bf{e}_v \pfrac{}{v} + \frac{1}{h_w} \bf{e}_w \pfrac{}{w} \] This now acts on vector fields \[ \bf{F} = F_u \bf{e}_u + F_v \bf{e}_v + F_w \bf{e}_w \] But now $\{\bf{e}_u, \bf{e}_v, \bf{e}_w\}$ depend on $(u, v, w)$ and are hit by derivatives $\implies$ a little messy. \begin{claim*} \[ \nabla \cdot \bf{F} = \frac{1}{h_u h_v h_w} \left( \pfrac{}{u} (h_v h_w F_u) + \pfrac{}{v} (h_u h_w F_v) + \pfrac{}{w} (h_u h_v F_w) \right) \] \[ \nabla \times \bf{F} = \left| \begin{matrix} h_u \bf{e}_u & h_v \bf{e}_v & h_w \bf{e}_w \\ \pfrac{}{u} & \pfrac{}{v} & \pfrac{}{w} \\ h_u F_u & h_v F_v & h_w F_w \end{matrix} \right| \times \frac{1}{h_u h_v h_w} \] \end{claim*} \begin{proof} Nope! \end{proof} \myskip For cylindrical polar \begin{flashcard}[cylindrical-div] \prompt{Divergence in cylindrical polar} \[ \nabla \cdot \bf{F} = \cloze{\frac{1}{\rho} \pfrac{(\rho F_\rho)}{\rho} + \frac{1}{\rho} \pfrac{F_\phi}{\phi} + \pfrac{F_z}{z}} \] \end{flashcard} \[ \nabla \times \bf{F} = \left( \frac{1}{\rho} \pfrac{F_z}{\phi} - \pfrac{F_\phi}{z} \right) \hat{\bf{\rho}} + \left( \pfrac{F_\rho}{z} - \pfrac{F_z}{\rho} \right) \hat{\bf{\phi}} + \frac{1}{\rho} \left( \pfrac{(pF_\phi)}{\rho} - \pfrac{F_\rho}{\phi} \right) \hat{\bf{z}} \] \begin{align*} \nabla^2 f &= \nabla \cdot \nabla f \\ &= \frac{1}{\rho} \pfrac{}{\rho} \left( \rho \pfrac{f}{\rho} \right) + \frac{1}{\rho^2} \pfrac[2]{f}{\phi} + \pfrac[2]{f}{z} \end{align*} \begin{hiddenflashcard}[cylindrical-laplacian] \prompt{Laplacian in cylindrical polar} \[ \nabla^2 f = \cloze{\frac{1}{\rho} \pfrac{}{\rho} \left( \rho \pfrac{f}{\rho} \right) + \frac{1}{\rho^2} \pfrac[2]{f}{\phi} + \pfrac[2]{f}{z}} \] \end{hiddenflashcard} \myskip For spherical polar \begin{flashcard}[spherical-div] \prompt{Divergence in spherical polar} \[ \nabla \cdot \bf{F} = \cloze{\frac{1}{r^2} \pfrac{(r^2 F_r)}{r} + \frac{1}{r\sin\theta} \pfrac{(\sin\theta F_\theta)}{\theta} + \frac{1}{r\sin\theta} \pfrac{F_\phi}{\phi}} \] \end{flashcard} \[ \nabla \times \bf{F} = \frac{1}{r\sin\theta} \left( \pfrac{(\sin\theta F_\phi)}{\theta} - \pfrac{F_\theta}{\phi} \right) \hat{\bf{r}} + \frac{1}{r} \left( \frac{1}{\sin\theta} \pfrac{F_r}{\phi} - \pfrac{(rF_\phi)}{r} \right) \hat{\bf{\theta}} + \frac{1}{r} \left( \pfrac{(rF_\theta)}{r} - \pfrac{F_r}{\theta} \right) \hat{\bf{\theta}} \] \begin{flashcard}[spherical-laplacian] \prompt{Laplacian in spherical polar} \[ \nabla^2 f = \cloze{\frac{1}{r^2} \pfrac{}{r} \left( r^2 \pfrac{f}{r} \right) + \frac{1}{r^2\sin\theta} \pfrac{}{\theta} \left( \sin\theta \pfrac{f}{\theta} \right) + \frac{1}{r^2\sin^2\theta} \pfrac[2]{f}{\phi}} \] \end{flashcard}