% vim: tw=50 % 14/02/2022 10AM \begin{note*} Here are some useful tips when evaluating derivatives of radial fields. We use \[ r^2 = x^i x^i \implies 2r \pfrac{r}{x^i} = 2x^i \] \[ \implies \pfrac{r}{x^i} = \frac{x^i}{r} \] Then we have \begin{align*} \nabla r^p &= \bf{e}_i \pfrac{r^p}{x^i} \\ &= pr^{p - 1} \frac{x_i}{r} \bf{e}_i \\ &= pr^{p - 1} \hat{\bf{r}} \end{align*} The vector $\bf{x} = x^i \bf{e}_i$ can also be written as $\bf{r} = r \hat{\bf{r}}$ to highlight that it points outwards. We have \[ \nabla \cdot \bf{r} = \pfrac{x^i}{x^i} = \delta_ii = n \] (in $\RR^n$). \\ Also in $\RR^3$, \[ \nabla \times \bf{r} = \eps_{ijk} \pfrac{x^j}{x^i} \bf{e}_k = 0 \] \end{note*} \subsubsection*{Some Basic Properties} For constant $\alpha$, scalar fields $\phi$ and $\psi$, and vector fields $\bf{F}$ and $\bf{G}$, we have \begin{align*} \nabla(\alpha \phi + \psi) &= \alpha \nabla \phi + \nabla \psi \\ \nabla \cdot (\alpha \bf{F} + Gbg) &= \alpha \nabla \cdot \bf{F} + \nabla \cdot \bf{G} \\ \nabla \times (\alpha \bf{F} + \bf{G}) &= \alpha \nabla \times \bf{F} + \nabla \times \bf{G} \end{align*} This is the statement that $\nabla$ is a \emph{linear operator}. \myskip $\nabla$ obeys a generalised product rule (known as Leibniz property): \begin{align*} \nabla(\phi\psi) &= \phi \nabla \psi + \psi \nabla \phi \\ \nabla \cdot (\phi \bf{F}) &= (\nabla \phi) \cdot \bf{F} + \phi (\nabla \cdot \bf{F}) \\ \nabla \times (\phi \bf{F}) &= (\nabla \phi) \times \bf{F} + \phi( \nabla \times \bf{F}) \end{align*} The proofs of these follow from the definitions. For example \begin{align*} \nabla \cdot (\phi \bf{F}) &= \pfrac{}{x^i} (\phi F_i) \\ &= \pfrac{\phi}{x^i} F_i + \phi \pfrac{F_i}{x^i} \\ &= \nabla \phi \cdot \bf{F} + \phi \nabla \cdot \bf{F} \end{align*} There are some further properties \begin{align*} \nabla \cdot (\bf{F} \times \bf{G}) &= (\nabla \times \bf{F}) \cdot \bf{G} - \bf{F} \cdot (\nabla \times \bf{G}) \\ \nabla (\bf{F} \cdot \bf{G}) &= \bf{F} \times (\nabla \times \bf{G}) + \bf{G} \times (\nabla \times \bf{F}) + (\bf{F} \cdot \nabla) \bf{G} + (\bf{G} \cdot \nabla) \bf{F} \\ \nabla \times (\bf{F} \times \bf{G}) &= (\nabla \cdot \bf{G})\bf{F} - (\nabla \cdot \bf{F})\bf{G} + (\bf{G} \cdot \nabla)\bf{F} - (\bf{F} \cdot \nabla)\bf{G} \end{align*} All of these are proven using index notation. IN the last two identities, we have introduced the notation \[ \bf{F} \cdot \nabla = F_i \pfrac{}{x^i} \] \subsubsection*{Definitions} \begin{itemize} \item A vector field $\bf{F}$ is \emph{conservative} if it can be written \[ \bf{F} = \nabla \phi \] for some scalar $\phi$. \item A vector field is called \emph{irrotational} if \[ \nabla \times \bf{F} = 0 \] \item A vector field is \emph{divergence free} or \emph{solenoidal} if \[ \nabla \cdot \bf{F} = 0 \] \end{itemize} \begin{theorem*}[A baby version of the Poincar\'e lemma] For fields defined everywhere on $\RR^3$, conservative $\iff$ irrotational, i.e. \[ \nabla \times \bf{F} = 0 \iff \bf{F} = \nabla \phi \] \end{theorem*} \begin{proof}[(sketch)] If $F_i = \pfrac{\phi}{x^i}$ then \[ (\nabla \times \bf{F})_k = \eps_{ijk } \frac{\partial^2 \phi}{\partial x^i \partial x^j} = 0 \] by symmetry. We will show $\nabla \times \bf{F} = 0 \implies \bf{F} = \nabla \phi$ when we prove Stokes' theorem in section 4. \end{proof} \begin{theorem*} For $\bf{F}$ defined everywhere on $\RR^3$, \[ \nabla \cdot \bf{F} = 0 \iff \bf{F} = \nabla \times \bf{A} \] for some vector field $\bf{A}$. \end{theorem*} \begin{proof}[(sketch)] If $F_i = \eps_{ijk} \partial_j A_k$ \[ \implies \nabla \cdot \bf{F} = \partial_i (\eps_{ijk} \partial_j A_k) = 0 \] by symmetry. The other way is an optional question on Example Sheet 2. \end{proof} \begin{definition*} The \emph{Laplacian} is a second order differential operator \[ \nabla^2 = \nabla \cdot \nabla = \pfrac{\partial^2}{\partial x^i \partial x^i} \] for example in $\RR^3$, we have \[ \nabla^2 = \pfrac[2]{}{x} + \pfrac[2]{}{y} + \pfrac[2]{}{z} \] Acting on a scalar field $\phi$, $\nabla^2$ gives back another scalar field $\nabla^2 \phi$. \\ It acts component-wise on a vector field $\bf{F}$ to give another vector field $\nabla^2 \bf{F}$. \end{definition*} \begin{claim*} $\nabla^2 \bf{F} = \nabla(\nabla \cdot \bf{F}) - \nabla \times (\nabla \times \bf{F})$ \end{claim*} \begin{proof} Use triple product formula for $\nabla \times (\nabla \times \bf{F})$. \end{proof} \myskip The Laplacian occurs in many places in maths and physics. For example, the \emph{heat equation} \[ \pfrac{T}{t} = D \nabla^2 T \] and tells us how temperature $T(\bf{x}, t)$ evolve in time. ($D$ is called the diffusion constant). \myskip The linear operator $\nabla$ also appears in many laws of physics. For example, the electric field $\bf{E}(\bf{x}, t)$ and magnetic field $\bf{B}(\bf{x}, t)$ are governed by the \emph{Maxwell equations} \begin{align*} \nabla \cdot \bf{E} &= \frac{\rho}{\eps_0} \\ \nabla \cdot \bf{B} &= 0 \\ \nabla \times \bf{E} &= -\pfrac{\bf{B}}{t} \\ \nabla \times \bf{B} &= \mu_0 \left( \bf{J} + \eps_0 \pfrac{\bf{E}}{t} \right) \end{align*} where $\rho(\bf{x}, t)$ is the electric charge density and$\bf{J}(\bf{x}, t)$ is the electric current density, and $\mu_0$ and $\eps_0$ are constants of nature.