% vim: tw=50 % 11/02/2022 10AM \begin{theorem*}[Gauss-Bonnet v2] Draw a geodesic triangle on a surface $S$. \begin{center} \includegraphics[width=0.6\linewidth] {images/7fbb27c28b7f11ec.png} \end{center} The sides are \emph{geodesics}, meaning curves with shortest arc length between two points. \[ \theta_1 + \theta_2 + \theta_3 = \phi + \int_\triangle \kappa \dd S .\] \end{theorem*} \newpage \section{Grad, Div and Curl} We will consider different ways to differentiate. \subsection{The Gradient} Consider a scalar field $\phi : \RR^n \to \RR$. Then we define the \emph{gradient} by \[ \phi(\bf{x} + \bf{h}) = \phi(\bf{x}) + \bf{h} \cdot \nabla \phi + \theta(|\bf{h}|^2) \] In cartesian coordinates $\bf{x} = (x^1, \dots, x^n)$ with $\{\bf{e}_i\}$ the associated orthonormal basis of $\RR^n$, we take \[ \bf{h} = \eps \bf{e}_i \] with $\eps \ll 1$ and this reduces to our earlier definition \[ \nabla \phi = \pfrac{\phi}{x^i} \bf{e}_i \] This is what we use practice. \begin{example*} Let $\phi : \RR^3 \to \RR$ with \[ \phi(\bf{x}) = -\frac{1}{r} \] with $r = \sqrt{x^2 + y^2 + z^2}$. Then \[ \pfrac{\phi}{x} = \frac{x}{(x^2 + y^2 + z^2)^{3/2}} = \frac{x}{r^3} \] and similarly for $\pfrac{\phi}{y}$ and $\pfrac{\phi}{z}$ \[ \implies \nabla \phi = \frac{x \hat{\bf{x}} + y \hat{\bf{y}} + z \hat{\bf{z}}}{r^3} = \frac{\hat{\bf{r}}}{r^2} \] where $\hat{\bf{r}}$ is the unit vector pointing radially (also called $\bf{e}_r$). \end{example*} \subsubsection*{Application} Let $\bf{x}(t) : \RR \to \RR^n$ define a curve in $\RR^n$ and $\phi : \RR^n \to \RR$ be a scalar field. Then \[ \phi(\bf{x}(t)) : \RR \to \RR \] is the value of $\phi$ along the curve. We can differentiate $\phi$ along the curve using the chain rule \[ \dfrac{\phi}{t} = \pfrac{\phi}{x^i} \dfrac{x^i}{t} = \nabla \phi \cdot \dfrac{\bf{x}}{t} \] \subsection{Div and Curl} We define the \emph{gradient operator} \[ \nabla = \bf{e}_i \pfrac{}{x^i} \] This is both a vector and a differential operator. These operators are waiting for some function to come along to be differentiated. $\nabla$ is also called \emph{nabla} or \emph{del}. \myskip Originally we introduced $\nabla$ as acting on a scalar $\phi : \RR \to \RR$. But we can also ask how it might act on other fields. \myskip Consider a vector field $\bf{F} : \RR^n \to \RR^n$. The \emph{divergence} of $\bf{F}$ is a scalar field, defined by \begin{align*} \nabla \cdot \bf{F} = \left( \bf{e}_i \pfrac{}{x^i} \right) \cdot (\bf{e}_j F_j) \\ &= (\bf{e}_i \cdot \bf{e}_j) \pfrac{F_j}{x^i} \\ &= \pfrac{F_i}{x^i} \end{align*} but $\bf{e}_i \cdot \bf{e}_j = \delta_{ij}$. For example in $\RR^3$ \[ \nabla \cdot \bf{F} = \pfrac{F_1}{x} + \pfrac{F_2}{y} + \pfrac{F_3}{z} \] with $\bf{F} = (F_1, F_2, F_3)$. \myskip We'll later see that $\nabla \cdot \bf{F}$ measures the net flow of $\bf{F}$ into / out of a point $\bf{x}$. \myskip For vector fields $\bf{F} : \RR^3 \to \RR^3$, we can also define the \emph{curl} \begin{align*} \nabla \times \bf{F} &= \left( \bf{e}_i \pfrac{}{x^i} \right) \times (\bf{e}_j F_j) \\ &= \eps_{ijk} \pfrac{F_j}{x^i} \bf{e}_k \end{align*} Equivalently \[ \nabla \times \bf{F} = \begin{pmatrix} \partial_2 F_3 - \partial_3 F_2 \\ \partial_3 F_1 - \partial_1 F_3 \\ \partial_1 F_2 - \partial_2 F_1 \end{pmatrix} \] where $\partial_i \equiv \pfrac{}{x^i}$. Alternatively \[ \nabla \times \bf{F} = \left| \begin{matrix} \bf{e}_1 & \bf{e}_2 & \bf{e}_3 \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{matrix} \right| \] We'll later see that $\nabla \times \bf{F}$ measures the rotation of $\bf{F}$. \subsubsection*{Examples in $\RR^3$} \begin{enumerate}[(1)] \item Consider $\bf{F} = (x^2, 0, 0)$ \begin{center} \includegraphics[width=0.6\linewidth] {images/eb5fd2648b8111ec.png} \end{center} \[ \implies \nabla \cdot \bf{F} = 2x \implies \text{more out than in at any point} \] \[ \nabla \times \bf{F} = \bf{0} \implies \text{no rotation} \] \item Consider $\bf{F} = (y, -x, 0)$ \begin{center} \includegraphics[width=0.6\linewidth] {images/07eb9ef48b8211ec.png} \end{center} \[ \nabla \cdot \bf{F} = 0 \implies \text{no build up at any point} \] \[ \nabla \times \bf{F} = (0, 0, -z) \implies \text{rotation in $x-y$ plane} \] \item $\bf{F} = \frac{\hat{\bf{r}}}{r^2}$. You can check that $\nabla \cdot \bf{F} = 0$ and $\nabla \times \bf{F} = \bf{0}$. Except there's a subtlety at $r = 0$ where $\bf{F}$ is singular. It turns out that \[ \nabla \times \bf{F} = \bf{0} \] \[ \nabla \cdot \bf{F} = 4\pi \delta^3(\bf{x}) \] Where \[ \delta^3(\bf{x}) = \delta(x)\delta(y)\delta(z) \] ($\delta$ is the Dirac delta function). \end{enumerate}