% vim: tw=50 % 26/01/2022 10AM \begin{example*} Let $C$ be the helix $\bf{x}(t) = (\cos t, \sin t, t)$. Then $\dot{\bf{x}}(t) = (-\sin t, \cos t, 1)$. \[ \implies \dfrac{s}{t} = \left| \dfrac{\bf{x}}{t} \right| = \sqrt{2} \implies s = \sqrt{2}t .\] The distance along the curve between $\bf{x}(0) = (1, 0, 0)$ and $\bf{x}(2\pi) = (1, 0, 2\pi)$ is \[ s = \int_0^{2\pi} \dd t |\dot{\bf{x}}| = \sqrt{2} \times 2\pi = \sqrt{8} \pi \] \[ \bf{x}(s) = (\cos(s/\sqrt{2}), \sin(s/\sqrt{2}, s/\sqrt{2}) \] \[ \bf{t} = \dfrac{\bf{x}}{s} = \frac{1}{\sqrt{2}} \left( - \sin \left( \frac{s}{\sqrt{2}} \right), \cos \left( \frac{s}{\sqrt{2}} \right), 1 \right) \] \[ \dfrac{\bf{t}}{s} = \ub{\half}_{\kappa} \ub{\left( - \cos \left( \frac{s}{\sqrt{2}} \right), -\sin \left( \frac{s}{\sqrt{2}} \right), 0 \right) }_{\bf{n}} .\] \end{example*} \noindent For curves in $\RR^3$, define the \emph{binormal} \[ \bf{b} = \bf{t} \times \bf{n} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/c39e482082bf11ec.png} \end{center} \begin{note*} $\bf{t}$, $\bf{n}$ and $\bf{b}$ are an orthonormal basis for each $s$ (at least with $\kappa(s) \neq 0$). \end{note*} \noindent Because $|\bf{b}| = 1$ we have $\bf{b} \cdot \dfrac{\bf{b}}{s} = 0$. Moreover, \[ \bf{t} \cdot \bf{b} = 0 \implies \dfrac{\bf{t}}{s} \cdot \bf{b} + \bf{t} \cdot \dfrac{\bf{b}}{s} = 0 \] \[ \implies \kappa \bf{n} \cdot \bf{b} + \bf{t} \cdot \dfrac{\bf{b}}{s} = 0 \] \[ \implies \bf{t} \cdot \dfrac{\bf{b}}{s} = 0 \] so $\dfrac{\bf{b}}{s}$ is $\perp$ to $\bf{b}$ and $\bf{t}$ hence $\dfrac{\bf{b}}{s}$ is parallel to $\bf{n}$. \myskip Define the \emph{torsion}, $\tau(s)$ as \[ \dfrac{\bf{b}}{s} = -\tau(s) \bf{n} \] The torsion measures how much the curve twists out of the plane. (It vanishes for planar curves.) \begin{note*} \[ \dfrac{\bf{t}}{s} = \kappa(s) (\bf{b} \times \bf{t}) \] \[ \dfrac{\bf{b}}{s} = \tau(s) (\bf{t} \times \bf{b}) \] These are six first order DEs in six unknowns $\bf{t}$ and $\bf{b}$. For fixed $\kappa(s)$ and $\tau(s)$, there is a unique solution if we're given $\bf{t}(0)$ and $\bf{b}(0)$. \\ i.e. $\kappa$ and $\tau$ specify $C$ up to translations / rotations. \end{note*} \subsection{Line Integrals} A scalar field $\phi(\bf{x})$ is a map \[ \phi : \RR^n \to R \] We would like to integrate $\phi(\bf{x})$ along a curve $C$ given by $\bf{x}(t)$ in a way that is \emph{independent} of the parametrisation. \myskip We work with the arc length. Let $\bf{x}(s)$ be a curve $C$ that urns from $\bf{x} = \bf{a}$ to $\bf{x} = \bf{b}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/a9f9ca9282c011ec.png} \end{center} We define the \emph{line integral} from $\bf{a}$ to $\bf{b}$ \[ \int_C \phi \dd s = \int_{s_a}^{s_b} \phi(\bf{x}(s)) \dd s \] where we take $s_a < s_b$. \begin{note*} This is defined so that $\int_C \dd s$ is the length of $C$ and is always positive. In other words, the line integral from $\bf{a}$ to $\bf{b}$ gives the same answer as $\bf{b}$ to $\bf{a}$. \end{note*} If you're given the curve $\bf{x}(t)$ using some other parameter, with $\bf{x}(t_a) = \bf{a}$ and $\bf{x}(t_b) = \bf{b}$ and $t_a < t_b$ then \begin{align*} \int_C \phi \dd s &= \int_{b_a}^{b_b} \phi(\bf{x}(t)) \dfrac{s}{t} \dd t \\ &= \int_{t_a}^{t_b} \phi(\bf{x}(t)) |\dot{\bf{x}}| \dd t \end{align*} (using $\dfrac{s}{t} = |\dot{\bf{x}}|$. This factor $|\dot{\bf{x}}|$ ensures independence of parametrisation.) \myskip A vector field $\bf{F}(\bf{x})$ is a map \[ \bf{F} : \RR^m \to \RR^n .\] The \emph{line integral} of a vector field $\bf{F}(\bf{x})$ along a curve $C$, parametrised by $\bf{x}(t)$, from $\bf{x}(t_a) = \bf{a}$ to $\bf{x}(t_b) = \bf{b}$ is \[ \int_C \bf{F} \cdot \dd \bf{x} = \int_{t_a}^{t_b} \bf{F}(\bf{x}(t)) \cdot \dot{\bf{x}}(t) \dd t \] This is the integral of $\bf{F}$ tangent to the curve (for example $\tau = \tau(t)$). \begin{note*} This time the direction of the integral matters. The integral from $\bf{a}$ to $\bf{b}$ is the negative of the integral from $\bf{b}$ to $\bf{a}$. \end{note*} \noindent The choice of direction along $C$ is called an \emph{orientation}. \myskip Again: the line integral of a scalar field does \emph{not} depend on the orientation of $C$; the line integral of a vector field does depend on the orientation.