% vim: tw=50 % 24/01/2022 10AM \noindent We will sometimes write $\dd \bf{x} = \dot{\bf{x}} \dd t$. \\ If we're in Cartesian coordinates then we just differentiate vector components \[ \bf{x}(t) = \bf{x}^i(t) \bf{e}_i \implies \dot{\bf{x}}(t) = \dot{x}^t(t) \bf{e}_i \] \begin{note*} If we have a function $f(t)$ and vectors $\bf{g}(t)$ and $\bf{h}(t)$ then the following identities hold \begin{align*} \dfrac{}{t} (\bf{f} \bf{g}) &= \dot{\bf{f}} \bf{g} + \bf{f} \dot{\bf{g}} \\ \dfrac{}{t} (\bf{g} \cdot \bf{h}) &= \dot{\bf{g}} \cdot \bf{h} + \bf{g} \cdot \dot{\bf{h}} \\ \dfrac{}{t} (\bf{g} \times \bf{h}) &= \dot{\bf{g}} \times \bf{h} + \bf{g} \times \dot{\bf{h}} \end{align*} (just apply the product rule to the components.) \end{note*} \subsubsection*{Tangent Vectors} The derivative $\dot{\bf{x}}(t)$ is the \emph{tangent vector} to the curve \begin{center} \begin{tsqx} ! size(5cm); arc3 origin dir(40) dir(160) label $C$ @ dir(40)+(0.1,0) label $O$ @ origin-(0,0.1) (0,0)->>dir(110) (0,0)->>dir(80) label $\mathbf{x}(t)$ @ 1.1*dir(110) label $\mathbf{x}(t + \delta t)$ @ 1.1*dir(80) dir(110)->>dir(80) red label $\delta \mathbf{x}$ @ dir(95)-(0,0.1) +col:red \end{tsqx} \end{center} \begin{note*} The direction $\delta \mathbf{x}(t)$ is independent of the parametrisation (at least up to a sign), while the magnitude does depend on parametrisation. \end{note*} \noindent For example, these two maps give the same curve $C$ in $\RR^2$ \[ \bf{x}(t) = (t, t) \implies \dot{\bf{x}} = (1, 1) \] \[ \bf{x}(t) = (t^3, t^3) \implies \dot{\bf{x}} = 3t^2 (1, 1) \] $C$ is just a line in $\RR^2$. In the second case $\dot{\bf{x}} = 0$ at $t = 0$ but this is due to the parametrisation, not to $C$ itself. \\ A parametrisation is \emph{regular} if $\dot{\bf{x}}(t) \neq 0 \,\,\forall\,\, t$. \\ In what follows, we'll assume regular parametrisations. \bigskip \noindent The \emph{arc length} is the distance along the curve. For nearby points \begin{align*} \delta s &= |\delta \bf{x}| + O(|\delta \bf{x}|^2) \\ &= |\dot{\bf{x}} \delta t| + O(\delta t^2) \\ \implies \dfrac{s}{t} &= \pm |\dot{\bf{x}}| \end{align*} ($\pm$ depends on whether $s$ increases or decreases as $t$ increases.) \\ The arc length is defined by \[ s = \int_{t_0}^t \dd t' |\dot{\bf{x}} (t')| \] \begin{note*} For $t > t_0$, $s > 0$, and for $t < t_0$, $s < 0$. \end{note*} \begin{claim*} $s$ is independent of our choice of parametrisation. \end{claim*} \begin{proof} Pick a different choice $\tau(t)$. Assume $\dfrac{\tau}{t} > 0$. Then \[ \dfrac{\bf{x}}{t} = \dfrac{\bf{x}}{\tau} \dfrac{\tau}{t} \] and \begin{align*} s &= \int_{t_0}^t \dd t' \left| \dfrac{\bf{x}}{t'} \right| \\ &= \int_{t_0}^t \dd t' \dfrac{\tau'}{t'} \left| \frac{\bf{x}}{\tau'} \right| \\ &= \int_{\tau_0}^\tau \dd \tau' \left| \dfrac{\bf{x}}{\tau'} \right| \end{align*} ($\tau_0 = \tau(t_0)$) \end{proof} \bigskip \noindent This means that $s$ itself is a natural parametrisation of the curve. We can think of $\bf{x}(s)$. \bigskip \noindent Because $\dfrac{s}{t} = |\dot{\bf{x}}(t)|$, the associated tangent vector $\dfrac{\bf{x}}{s}$ has $\left| \dfrac{\bf{x}}{s} \right| = 1$. \subsubsection*{Curvature and Torsion} A curve $C$ parametrised by the arc length $s$, has tangent vector \[ \bf{t} = \dfrac{\bf{x}}{s} \] \begin{note*} $\bf{t}$ is not the same thing as our previous parameter! \end{note*} \noindent This has $|\bf{t}| = 1$. \myskip The curvature $\kappa(S)$ is \[ \kappa(s) = \left| \dfrac[2]{\bf{x}}{s} \right| = \left| \dfrac{\bf{t}}{s} \right| \] To get some intuition, consider a circle \[ \bf{x}(t) = (R \cos t, R \sin t) \] Use $\dfrac{s}{t} = |\dot{\bf{x}}|$ to get $s = Rt$. \[ \implies \bf{x}(s) = (R \cos \left( \frac{s}{R} \right), R \sin \left( \frac{s}{R} \right) \] \[ \implies \kappa(s) = \frac{1}{R} \] (which is constant.) \myskip Define the \emph{(principle) normal} \[ \bf{n} = \frac{1}{\kappa} \dfrac[2]{x}{s} = \frac{1}{\kappa} \dfrac{t}{s} \] (when $\kappa(s) \neq 0$) \begin{note*} $|\bf{n}| = 1$. \end{note*} \begin{claim*} If $\kappa \neq 0$, then $\bf{n} \cdot \bf{t} = 0$. \end{claim*} \begin{proof} $\bf{t} \cdot \bf{t} = 1 \implies \dfrac{}{s}(\bf{t} \cdot \bf{t}) = 2\bf{t} \cdot \dfrac{\bf{t}}{s} = 0$. \end{proof} \noindent Hence $\bf{n}$ and $\bf{t}$ define the \emph{oscillating plane}. \myskip The curvature $\kappa(s)$ of a curve coincides with that of a circle touching $C$, at $S$, lying in the plane. \begin{center} \includegraphics[width=0.6\linewidth] {images/d79525187d0311ec.png} \end{center} \begin{note*} Because $\bf{t} \cdot \dfrac{\bf{t}}{s} = 0$, for curves in $\RR^3$, we can also compute the curvature as \[ \kappa = \left| \bf{t} \times \dfrac{\bf{t}}{s} \right| = \ub{|t|}_{=1} \left| \dfrac{\bf{t}}{s} \right| \] \end{note*}