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Introduction

We will learn to differentiate and integrate functions (or maps) of the form

f: R™ — R"
~~ ——

domain codomain

An element of R™ or R” is a vector so this subject is called vector calculus.

Examples of Maps

(1)

A function f : R — R" defines a curve in R™. In physics, we might think of R as
time and R™ as physical space and write this as

fit—x(t)

with x € R™. (Obviously we should take n = 3). Generalising, a map
f:R*—R"

defines a surface in R”, and so on.

In other applications, the domain R™ might be viewed as physical space. For exam-
ple, in physics a scalar field is a map

f:R* =R

for example temperature 7'(x) is a scalar field, as is the Higgs field.
A wvector field is a map

f: R R3
~— ~—
physical space somethinge more abstract

for example the electric field E(x) and magnetic field B(x) are vector fields.
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1 Curves

We consider maps of the form
f:R—>R"
Assign a coordinate ¢ to R and use Cartesian coordinates on R".
x = (z!,...,2") =2le

where e; is an orthonormal basis such that e;-e; = d;;. Note that summation convention
is used here. (For R3 we also use notation {e;} = {X,¥y,%}.)

The image of of the function f is a parametrised curve x(t), with ¢ the parameter.
Examples
(1) Consider the map R — R? given by
x(t) = (at,bt?,0)
The curve C is the parabola a?y = bz? in the plane z = 0.

Y

[ Note. When plotting the curve, we lose information about the parameter t. }

(2) Consider x(t) = (cost,sint,t)



TN

The curve C is a helix.
The choice of parametrisation is not unique, for example consider
x(t) = (cos At,sin \t, At).

This gives the same helix for all A € R\ {0}.

Sometimes the choice of parametrisation matters, for example if ¢ is time and x(¢) is
position, then the velocity is proportional to A\. But we will see that some questions are
independent of the choice of parametrisation.

1.1 Differentiating the Curve

A vector function x(t) is differentiable of ¢ if, as §t — 0, we have

x(t + 6t) — x(t) = x(£)8(t) + O(5t2).

If x(t) exists everywhere, the curve is said to be smooth.

[ Note. “Big O” notation O(dt?) means terms proportional to 6¢> or smaller. ]

In physics, dot is usually used for time derivatives, for example x(¢) and prime for spatial
derivatives, for example f'(x).
In maths, these are used interchangeably.

Some notation: we write
0x(t) = x(t + dt) — x(t)
The derivative is then
X = d—x = lim 5—X
dt 6t—0 Ot
Start of
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We will sometimes write dx = xdt.
If we're in Cartesian coordinates then we just differentiate vector components

X(t) = xi(t)ei — X(t) = i‘t(t)ei

( I
Note. If we have a function f(t) and vectors g(t) and h(¢) then the following

identities hold

d .
—(fg) = fg + fg
dt(g) g+ fg

d .
—(g-h)=¢-h ‘h
& h=gh+tg
%(gxh):gxh—i—gxh

(just apply the product rule to the components.)
N\ Y

Tangent Vectors
The derivative x(t) is the tangent vector to the curve

X(t) X(t + 6t)

Note. The direction 0x(t) is independent of the parametrisation (at least up to a
sign), while the magnitude does depend on parametrisation.

For example, these two maps give the same curve C' in R?
x(t) = (t,t) = x=(1,1)

x(t) = (£3,13) = x = 3t%(1,1)

C is just a line in R?2. In the second case x = 0 at t = 0 but this is due to the
parametrisation, not to C itself.

A parametrisation is reqular if x(t) # 0V t.

In what follows, we’ll assume regular parametrisations.



The arc length is the distance along the curve. For nearby points

8s = |6x| + O(|0x/?)
= |%5t| + O(5t?)
ds

3 = T

(+ depends on whether s increases or decreases as t increases.)
The arc length is defined by
t
5= / av'|x (1)
to

[Note. For t > tg, s > 0, and for ¢t < g, s < 0. ]

‘ Claim. s is independent of our choice of parametrisation. ’

Proof. Pick a different choice 7(t). Assume ‘é—; > 0. Then

dx _ dxdr
dt  dr dt
and
t
s—/ dt’ d—x
to d¢
_/t dt’diTl E
- to dt/ T/
T dx
/TO e
(10 = 7(t0)) O

This means that s itself is a natural parametrisation of the curve. We can think of x(s).

Because 42 = [%(t)|, the associated tangent vector X has ‘i—;‘! =1.

Curvature and Torsion
A curve C parametrised by the arc length s, has tangent vector

_dx

t=_—"=
ds



[ Note. t is not the same thing as our previous parameter! }

This has [t| = 1.

The curvature k(.5) is

d?x
ds?

dt

K(s) = i

To get some intuition, consider a circle

x(t) = (Rcost, Rsint)

Use 4 = [%| to get s = Rt.
= x(s) = (Rcos (%) , Rsin (%)

1
= k(s) = 7
(which is constant.)

Define the (principle) normal
1 d2x o 1ldt
 kds?  kds
(when s(s) #0)

[ Note. |n| =1. ]

| Claim. If % # 0, then n - t = 0. ’

Proof.t-t:1:>C%(t-t):Qt.%:(), 0
Hence n and t define the oscillating plane.

The curvature x(s) of a curve coincides with that of a circle touching C, at S, lying in
the plane.

C

D

™



Note. Because t - % =0, for curves in R?, we can also compute the curvature as

t % dt # dt
K= — | = -
ds ~—~— ds
Start of
lecture 3 Example. Let C be the helix x(t) = (cost,sint,t). Then x(¢) = (—sint, cost, 1).
ds dx
o2 =2 = V/2t.
= =3 V2 = s=V2

The distance along the curve between x(0) = (1,0,0) and x(27) = (1,0, 27) is
2
s:/o dt|x| = V2 x 2 = V/8x
x(s) = (cos(s/V2),sin(s/V2,s/V?2)
t= dx = L (—sin S) , COS <S> ,1)
ds V2 V2 V2

For curves in R3, define the binormal

b=txn

?}
N

i

&

‘o(/

[ Note. t, n and b are an orthonormal basis for each s (at least with x(s) # 0). }
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Because |b| = 1 we have b - 42 = 0. Moreover,

dt db
t-b=0= —-b+t-— =0
ds * ds
db
= kn-b+t-— =0
ds
db
= t-— =0
ds
SO % is L to b and t hence % is parallel to n.
Define the torsion, 7(s) as
db
= —7(s)n

ds
The torsion measures how much the curve twists out of the plane. (It vanishes for planar

curves.)

( N
Note. dt
P k(s)(b x t)
db
T 7(s)(t x b)
These are six first order DEs in six unknowns t and b. For fixed x(s) and 7(s),
there is a unique solution if we're given t(0) and b(0).
i.e. k and 7 specify C up to translations / rotations.
L J

1.2 Line Integrals

A scalar field ¢(x) is a map
¢:R*"— R

We would like to integrate ¢(x) along a curve C' given by x(t) in a way that is independent
of the parametrisation.

We work with the arc length. Let x(s) be a curve C' that urns from x = a to x = b.

x (sp:h



Start of
lecture 4

We define the line integral from a to b

/C bds = / H(x(s))ds

where we take s, < sp.

Note. This is defined so that fc ds is the length of C and is always positive. In
other words, the line integral from a to b gives the same answer as b to a.

If you're given the curve x(¢) using some other parameter, with x(¢,) = a and x(t;) =
b and t, < t; then

by ds
/C s = [ otx(t) G
tp

= [ o(x(t))[x|dt

la

(using % = |x|. This factor |x| ensures independence of parametrisation.)

A vector field F(x) is a map
F:R™ — R".

The line integral of a vector field F(x) along a curve C, parametrised by x(t), from
x(ty) = a to x(tp) = b is

/CF-dx:/t:b F(x(t)) - x(t)dt

This is the integral of F tangent to the curve (for example 7 = 7(t)).

Note. This time the direction of the integral matters. The integral from a to b is
the negative of the integral from b to a.

The choice of direction along C' is called an orientation.

Again: the line integral of a scalar field does not depend on the orientation of C'; the
line integral of a vector field does depend on the orientation.

10


https://notes.ggim.me/VC#lecturelink.4

Example. Let F(x) = (ve¥, 2% 2y). For Cy let x(t) = (t,t,t), and for Cy let
x(t) = (t,t2,¢3). We'll integrate from (0,0,0) to (1,1, 1).

x (s)sb

CC(%.)-—Q_\

For Cy: F(t) = (te”, 15, 43) and x(t) = (1, 2t, 3t2).
1 2
= F.dx = / dt(te?” + 2t 4 3t5)
Ch 0
= 1(1 + 2e)
4
For Co: F(t) = (tet,t2,#*) and x(t) = (1,1, 1).
1
— F.dx = / dt(te! + 2t?)
Co 0

w | ot

[ Note. Answer depends on C. ]

Sometimes we will integrate along a closed path C, with a = bf. The line integral is the
circulation of F around C', denoted as

fF~dx
C

Sometimes we will have a piecewise smooth curve C = C1 + Cs, and then we define

/ F-dx:/ F-dx+/ F - dx.
C1+Co C1 Ca

11



The curve —C' is the curve C but with the opposite orientation, so

/ F-dx:—/F-dx
- C

for example let C' = C'y — C5 in our example. Then

1 5
%F-dx:/ be-dx—/ F-dx=-(1+2¢)— =
c o Co 4 3

1.3 Conservative Fields

Question: Do there exist F such that f o F-dx is independent of the path chosen between
two fixed end points a and b i.e.

/ F-dx:/ F - dx?
Cl C2

(for all Cy and Cy with the same end points).

Equivalently, considering C' = C1 — Cs, this would mean
}1{ F-dx=0
C
for all closed paths C.

The gradient

Consider a scalar field ¢ : R™ — R. The partial derivatives are defined to be

9% i Lot + e 22

12



and similar for % etc. The function is differentiable if all n partial derivatives exist.
We write: 96
ai(b:@xi i=1,....n

Also, it’s not uncommon to stress which variables are held fixed by writing
()
ox! z2,..,2"

Let {e;} be orthonormal basis of R"™. Then the gradient of a scalar field is vector field,
defined as

0¢
Vo= gur®
[ Note. Sometimes the V is written with bold or underline. j
If we want to compute how ¢ changes in some direction n with || = 1, then we

compute the directional derivative n - V.

This is maximised at any point x by picking i || V¢. But this means that V¢(x) points
in the direction in which ¢(x) increases most quickly.

Back to Conservative Fields

A vector field F is called conservative if it can be written as
F=V¢

for some ¢ called a potential.

Claim.

%F~dX:0VC
C

if and only if F is conservative.

Proof. If F = V¢ then along any open curve C, parametrised by x(t), we have

/CF~dx—/CV¢>-dx

b 9¢ dxt
, dt
ta axl dt

ty d
- / S o(x(1))de
— 6(x(ts)) — B(x(ta))

13



i.e. only depends on the end points. Conversely, suppose that

%F-dx:O
c

Let ¢(0) = 0 and define

Then
0 1
(bi(y):limf / F-dx—/
Oz e=0 e | Jo(ytee; c)
1 y+ee;
= lim — F.dx
e—0 e y
= lim * (cF)
o el—>I% e et
= F,
O
Start of Question: Given F, how do we know if its conservative?

lecture 5

Answer: There is a check. If F; = gfi then

OF, 0% _ OF
oxt  Oxidxri  Oxt

Vi, .

This is a necessary condition. We will later see that this is also a sufficient condition (if
F is everywhere well defined).

Example.

3

F = (3x2ysinz,x sin z, 23y cos z).

Check:
N Fy =32?sinz = 0o Fy

81F3 = 35(52y COSz = 83F1
0o F5 = 2> cos z = O3 Fy.

Indeed F = V¢ with ¢ = 23y sin z, so fC F - dx depends only on the end points of
C.

14
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Exact Differentials

Given a function ¢(x), the differential is

d¢ = 8¢dxi::v¢-dx.
ozt
Given a vector field F, the object F - dx is ezact if it can be written as

F.dx =do

An Application

The trajectory x(t) of a particle is governed by Newton’s second law

mx(t) = F(x)
We define the kinetic energy
k= Smi
= —mx
5™
This changes over time as
2 dk

to
:/ F - xdt
t1
:/F-dx
C

This is called the work done. For conservative forces

F=-VV
Then
kita) ~ k(1) = [ Fedx=—Vita) + V(1)
= F(t) = k(t) + V(t) = constant.
A Subtlety
Consider
" <_1:2 —yFyQ’ inyz)

Check ) )

@@:@@:%&%

15



and indeed F = V¢ with ¢ = tan~!(y/x). Now integrate F around

x(t) = (Rcost, Rsint) 0<t<2r

27 :
- /0 (—SIJI;(—Rsint) -+ ?(Rcost)) dt

Why?!

It’s because F isn’t defined at the origin. Moreover, ¢ is discontinuous along the x =0
axis.

Our previous claim that fCF - dx = 0 only holds when ¢ is a continuous function, or
when F is defined inside C' in R?.

16



2 Surfaces (and Volumes)

2.1 Multiple Integrals
Area Integrals

Consider a region D C R?. We want to integrate a scalar field ¢(z,y) over D, i.e.

/D $d A

(dA = dzdy is the area element).

E Note. It’s sometimes written [[, ¢dA.

Basic idea:

N\

/D p(2)dA = 3 b(ra)dA

Start of
lecture 6 E Note. For ¢ =1, [, dA is the area of D.

To evaluate the area integral, we split the region D into strips.

17
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Soe

3(7_('3\

Do [ dz for some fixed y, and then do [ dy.

z2(y)
/ odA = / dy/ dzo(z,y)
z1(y)

(z1(y) and z2(y) trace the outline of D).

Note. This is written as [ dz(integrand) instead of [(integrand)dz. You do [dz
first, and then | dy.

Alternatively, we could divide D as

cﬂm(z)% .

A6 |

/ pdd = / /yj(j)dym,y)

Now do [ dy first and then [ dz.

For suitably well behaved ¢ and D, any way of splitting up [ dA gives the same result.
(Fubri’s theorem).

18



Example. Let ¢(z,y) = 2%y and D be the triangle

or

It is often useful to evaluate integrals using something other than cartesian coordinates.
Consider a change of variables

(x,y) — (u,v).

We assume that this map is smooth and invertible. We can then use (u,v) as coordinates
on R2.

19



00?\.5"

I _—e

V (ons‘i
= 2(

How do we do the integral in (u,v) coordinates?

Claim. The area integral can be written as

/(bdA:/ dudv|J (u, v)|é(u,v)
D D

Here the Jacobian is the modulus of the determinant

dz Oz
ol =5 G
ou Ov
We will also write the matrix o )
T,y
J =
<u7 ’U) a(u, v)

Proof. We sum over the small parallelograms sandwiched between u, v = constant lines.
Let x = z(u,v) and y = y(u,v).

ox ox
= dx = %5’& + %511
and 9 9
_9y 9y
oy = 8u5u+ avdv

= ()= %))

20



U= ¢onsh

S

e

V= (o VlS1L

J

So

o

Il
AT~
~

(=%

IS

=8
Il
/\\

Yy SR
N——

(e

4

The area of parallelogram is

§A=|axb|= ’8(m,y) Sudv = | J|sudv.

0(u,v)

An Example: 2D Polar Coordinates
Plane polar coordinates are defined by
T = pCcos ¢ y = psin ¢

with ¢ € [0,00) and ¢ € [0,27). Then

7 O(w,y) |cos¢ —psing _
~ 9(p,¢) |sing pcos¢
The area element is
0A = pdpdo

21
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r

> ¢

As an example, let D be the region z,y > 0 and z? + y? < R2.

J

N\

7
7

Thisis 0 <p < Rand 0 < ¢ < 5. We will integrate f = e~ @ +9%)/2 = =p*/2,

/fdA / d¢/ dppe /2

R— o<

2[ e~ P /2 15
= g(l - e_RQ/z)
Start of
lecture 7
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Note. As R — oo, we integrate over the whole of x,y > 0 quadrant. In cartesian
coordinates, we have

o0 o0
/ da / dye—(@+4)/2
0 0

I
VRS

/ dxemz/2> (/ dyew2/2>
0 0

1S9 ) 2
dze ™™ /2>

I
N
S~

I
b
ro| 3

:>/ dze™*"/2 =
0

Volume Integrals

We now generalise to integrals over a region V C R3. We have

/V S(x)dV = lim_ Zn: d(x,)0V

We again perform the integral one coordinate at a time. Again, the order doesn’t matter.

Z
™ z, (5%

L.(%'U:)

\) ‘S

Y,

< o)

z2(z,y)
/¢dV /dA/ dzo(x,y, 2)
(z,y)

or

23
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¥

/V¢dV:/dz /D(Z) dzdyo(z,y, z)

Under an invertible, smooth change of coordinates

(z,y,2) — (u,v,w)

we have
dV = |J|dudvdw
with
dz  Jdz Oz
FECAEI N TR T T
u,v,w) | B P
ou  Ov Ow

The proof is similar to before. For example, spherical polar coordinates are

x = rsinf cos ¢
y = rsinfsin ¢

z=17cosf

24



with r > 0, 6 € [0, 7] and ¢ € [0,27). We find J = r?sin 6
— dV = r?sinAdrdfde

Cylindrical polar coordinates are

T = pcoso
y = psing
z=2z

—7y!

25



with p > 0 and ¢ € [0,27). Now J = p and
dV = pdpdeodz.

Examples

(1) A spherically symmetric function f(r) integrated over a ball of radius R

/de / dr/ a0 [ dsy? 22sing £(r)

J

= 27— cos 0|} /0 drr? f(r)
—in /0 "t r(r)

If f=1 = V=% — yolume of the ball.

(2) What is the volume of a ball of radius R with cylinder of radius s < R removed
from the middle? .image In cylindrical polars, V is s < p < R and —/R2 — p? <

2 < +y/R2—p?2and 0<¢>2m So

Vol:/ dv
2T +
[
R2—p

= 27r/ dp2p\/ R?2 — p?
_ ‘%W(Rz _ 2P

(3) A hemisphere H of radius R and z > 0 has charge density f(z) = foZ with fy =
constant. What is the total charge?

26



Use spherical polars.

ﬂ
IN
IN =

IN
> ©
[\
=)

0
0<

fO 2 w/2 R
= / de:/ dq5/ d9/ drr?sinfrcosf
H r Jo 0 0o Y TTY

41 R w/2
:%hr]rmﬂ
R 4], |2 0

IN
|y

1
= ZWR:SJCO

(4) To compute the centre of mass of an object, we need vector valued integrals. Let
p(x) be the density

=—> mass M:/ p(x)dV
\%4

and center of mass is
1
X = i /Vp(x)de

For example for the solid hemisphere of constant density p
2
M = / pdV = L HR3
H 3

and X = (X,Y, 2).

p 2w R w/2
X = / d(b/ dr/ dfz r?sinf = 0
M Jo 0 0 —

27
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Similarly Y = 0.
2m R /2
Z:p/ d¢/ dr/ 022 sin = 1
M Jo 0 0 8

2.2 Surface Integrals
We define surfaces in R? by

e A function F(z,y,z) =0
e A paramterised surface is a map
x: R?— R3

At each point on the surface, the normal vector n points away in a perpendicular direc-
tion.

Claim. For the surface F(x) =0, n || VF.

Proof. m - VF is the rate of change of F' in the direction m. There are two linearly
independent vectors m; and mo that lie tangent to the surface and obey m; - VI = 0,
i =1,2. The normal vector n is perpendicular to m; and my and so n || VF. O

We usually define

1
—+ _ VF
n |VF|V

For a parametrised surface x(u,v) the tangent vectors are
ox ox
— and —
ou ov

ox

The normal vector is n || g—’; X o

Definition. If n # 0 at all points, the surface is reqular.

Examples

(1) F(x) = 22 +y? + 22 — R? = 0 is a sphere of radius R. The normal vector is || to
VF and is

[\
SIS

28
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(2) A hyperboloid is defined by

Fx)=a?+¢y*—22—R*=0

Ve

q;?a hme)'
< Ao ema
neok ell

d‘ép;l\éd(

A\

A surface S can have a boundary. The boundary is a closed curve C, denoted as C' = 95.

Deep Fact: The boundary curve C' is closed, i.e. it has no end points.

29



Another Deep Fact: We denote the boundary of something by 0. The fact that the

boundary of a boundary vanishes is written

dC = 9*S =0

Definition. A surface is bounded / unbounded if it doesn’t / does stretch to infinity.
A bounded surface with no boundary is closed.

Note. There is no canonical way to fix the 4 sign of n. If there is a consistent choice
over the surface S, then S is orientable. For example the sphere S? is orientable
but the Mébius M with M = S! (circle) is non-orientable. We will only work with
orientable surfaces.

~

Integrating Scalar Fields

Consider a parametrised surface
x(u,v)

sit at some point (u,v) and move a small amount du or dv.

O=
2k

(V\,\/\ X /DN

The parallelogram defined by % and g—zf has scalar area
0ox 0Ox
08 = |=— X —| dud
9 X 5y | 01OV

The integral of a scalar field ¢(x) over a parametrised surface is

/S H(x)dS = /D dudv

o o
o x | 6(x(u,v)

30
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Note. This does not depend on the orientation of S. Also [, g dS is the area of the
surface. Also, the integral does not depend on the choice of parametrisation.

To see that this integral is parametrisation invariant, suppose that x(@, ) describes the

same surface. Then
o0x B oxou 0x0v

u dudu ' 95ou
ox B oxou Ox0v
v 9udv | 9o ov
ox  Ox _0(0)0x  0x
ou  Ov  Ou,v)ou O

But from earlier,

I o(u,v)
duadv = B, v) dudv
ox ox| ._ ..
— dS = % X % dud'v

and the integral takes the same form for (u,v) and (a,?).

An Example

Let s be the surface of a sphere of radius R subtended by angle a.

€.

/'\

In spherical polars,

x(0, ) = R(sin 0 cos ¢, sin f sin ¢, cos )
:= Re,

31
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(with ¢ € [0,27) and 0 € [0, ). We also write e, = r. We have

% = R(cos 0 cos ¢, cos 0 sin ¢, — sin 0)
= Rey
OX _ R(—sinsin 6,sin f cos 6,0)
9 = sin 0 sin ¢, sin € cos ¢,
:= Rsinfey
ox ox 2 .
_— %X?—R sin fe,

= dS = R?sin#dfde

2T o
A:/ d¢/ dOR?sin 0
0 0

= 27R*(1 — cos )

The area is now

Integrating Vector Fields

It is often useful to integrate a vector field over a surface to yield a number. We do this

b
Y /SF(X) .ndS = /Ddudv <gz X gjj) - F(x(u,v))

(n is unit normal to the surface). This is the flur of F through S. Again, it is
reparametrisation invariant.

We define the vector area element

ox 0Ox
dS =ndS = u X %dudv

Clearly |dS| = dS. Then the flux can be written as

/F-dS
s

The flux depends on the orientation of S, i.e. on the sign of n.

An Application: Consider a fluid with a velocity field F(x).
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In a small ¢, the amount of fluid that flows through S is

Fluid flow = Fét - ndS

Flow = / F - dS = fluid crossing S per unit time
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Example. Let F = (—z,0, 2).

=

We'll integrate this over the spherical cap r = R, 0 < 0 < a and 0 < ¢ < 27. We
know that
dS = RZ%sin f#dbd e,

e, =T = (sinf cos ¢, sin  sin ¢, cos 0)

F-e = —xsinfcos¢+ zcosb
= R(—sin? 0 cos® ¢ + cos? 6)
using z, z polar coordinates.

/F ds = / dé ng)R sin f(— sin” cos® ¢ + cos? 0)

= 7R3 cos o st «

The Gauss-Bonnet Theorem (non-examinable)

Consider a surface S with a normal n at some point.
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Draw a plane containing n. The intersection of the plane and S gives a curve C, with
curvature x at the point.

Now we rotate the plane about n = the curve and s change. The Gaussian curvature
of S at the point is
K = Kminkmax

Theorem (Gauss-Bonnet v1). For a closed surface S,

/S/adS =4n(1 —g)

where g = genus = number of holes. For example, for a sphere g = 0, for a torus
g = 1 and a double torus has g = 2.

Start of
lecture 10
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Theorem (Gauss-Bonnet v2). Draw a geodesic triangle on a surface S.

)V

The sides are geodesics, meaning curves with shortest arc length between two points.

91+92+93:¢+/ KkdS.
AN
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3 Grad, Div and Curl

We will consider different ways to differentiate.

3.1 The Gradient
Consider a scalar field ¢ : R® — R. Then we define the gradient by

¢(x +h) = ¢(x) + h- Vo +0(|hf)

In cartesian coordinates x = (x!,...,2") with {e;} the associated orthonormal basis of
R"™, we take
h = ce;

with € <« 1 and this reduces to our earlier definition

¢
VQb = @Ei
This is what we use practice.
Example. Let ¢ : R? — R with
1
P(x) = -

with 7 = /22 + y2 + 22. Then
99 %5 T

Oz (a2 +y2+22)%2 g3

and similarly for % and g—f

rX+yy+zz T

where T is the unit vector pointing radially (also called e;).

Application
Let x(t) : R — R"™ define a curve in R and ¢ : R™ — R be a scalar field. Then

o(x(t) :R—=R

is the value of ¢ along the curve. We can differentiate ¢ along the curve using the chain

rule ,
d¢  0¢ da’

dt 9zt dt

dx
— Vo —
¢ dt
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3.2 Div and Curl
We define the gradient operator
0
ot
This is both a vector and a differential operator. These operators are waiting for some
function to come along to be differentiated. V is also called nabla or del.

V:ei

Originally we introduced V as acting on a scalar ¢ : R — R. But we can also ask how
it might act on other fields.

Consider a vector field F : R™ — R"™. The divergence of F is a scalar field, defined by

0
V- -F= (el(w) . (eij)

OF;
= (ei-e)) 8xz
_oF,

- Ort

but e; - e; = ;;. For example in R3

o n OF, n OF3
or oy 0z

V-F =

with F = (Fl,FQ,Fg).
We'll later see that V - F measures the net flow of F into / out of a point x.

For vector fields F : R® — R?, we can also define the curl

0
VxF = (ezaxz> X (e]Ej)

OF}
= 5ijk%ek
Equivalently
OoF5 — O3 F»
VxF= 83F1—81F3
81F2 — 82F1
where 0; = % Alternatively
€ €y €3
VxF= 01 62 63
F Fy Fj

We'll later see that V x F measures the rotation of F.
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Examples in R?

(1) Consider F = (z2,0,0)

——>——&> “~} = —_—<—

— V.F =2z =— more out than in at any point

V xF =0 = no rotation

(2) Consider F = (y, —z,0)

V-F =0 = no build up at any point

V xF =(0,0,—z) = rotation in z — y plane

(3) F= 7% You can check that V-F =0 and V x F = 0. Except there’s a subtlety at
r = 0 where F is singular. It turns out that

VxF=0

V- F = 4763(x)
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Where

(0 is the Dirac delta function).

Note. Here are some useful tips when evaluating derivatives of radial fields. We
use

o or
r? =1yt = 2r—
ox’

3

= 27"

or x

ort  r
Then we have
orP
oz’

1%
=pr? 17ez‘

VrP = e

= prP~ ¢

The vector x = z'e; can also be written as r = 7 to highlight that it points
outwards. We have ]
ox*

V'r:&ci

:(Mzn

(in R™).
Also in R3,

Oxd
Vxr= Cijk €k = 0
ox?

~

Some Basic Properties

For constant «, scalar fields ¢ and 1, and vector fields F and G, we have

V(ap+¢) = aVe+ Vo
V- (aF+Gbg) =aV-F+V- -G
Vx(@F+G)=aVxF+VxG

This is the statement that V is a linear operator.

V obeys a generalised product rule (known as Leibniz property):

V(py) = ¢Vip + Ve
V- (¢F) = (Vo) - F +6(V - F)
V x (6F) = (V) x F + ¢(V x F)
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The proofs of these follow from the definitions. For example

0

V- (oF) = 55 (oF7)

%
= 9w Z+¢8:r’

—V¢-F+¢V-F

There are some further properties

V.- FxG)=(VxF)-G-F-(VxQG)
VF-G)=Fx(VxG)+Gx (VxF)+(F-V)G+ (G-V)F
Vx(FxG)=(V-GF—-(V-FIG+(G-V)F—- (F-V)G
All of these are proven using index notation. IN the last two identities, we have intro-

duced the notation

0

ox?

Definitions

e A vector field F is conservative if it can be written
F=V¢
for some scalar ¢.
e A vector field is called wrrotational if

VxF=0

e A vector field is divergence free or solenoidal if

V-F=0

Theorem (A baby version of the Poincaré lemma). For fields defined everywhere
on R3, conservative <= irrotational, i.e.

VXxF=0<+= F=V¢

(sketch). If Fy = 2% then

0%¢
(VX )i = e oxtoxd 0
by symmetry. We will show VX F =0 =— F = V¢ when we prove Stokes’ theorem in
section 4. 0
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Theorem. For F defined everywhere on R3,
V.- F=0 <= F=VxA

for some vector field A.

(sketch). If Fi = 5,;jk8jAk
= V.-F= 6i(€ijk8jAk) =0

by symmetry. The other way is an optional question on Example Sheet 2. O

Definition. The Laplacian is a second order differential operator

00?
2 — . = -
Vi=VeV 00xi O’
for example in R3, we have
0? 0? 0?
2 _ 2 4 42
V= 0x? + 0y? + 072

Acting on a scalar field ¢, V? gives back another scalar field V2¢.
It acts component-wise on a vector field F to give another vector field V2F.

Claim. V2F =V(V-F) -V x (V x F)

Proof. Use triple product formula for V x (V x F). O

The Laplacian occurs in many places in maths and physics. For example, the heat
equation

or
— = DV’T
ot v

and tells us how temperature 7'(x, t) evolve in time. (D is called the diffusion constant).

The linear operator V also appears in many laws of physics. For example, the electric
field E(x,t) and magnetic field B(x, t) are governed by the Mazwell equations

v.Ezﬁ
€0
V-B=0
0B
E=——
V x 5
OE
B= J —
V x ,ug< +5Oat>
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where p(x,t) is the electric charge density andJ(x,t) is the electric current density, and
o and € are constants of nature.

3.3 Orthogonal Curvilinear Coordinates
We want to find expressions for V in different coordinates systems.
Introduce coordinates u, v, w so
x = x(u, v, w)
A change of (u,v,w) changes the point x to x + dx

0x 0x o0x
dx = %du + %dv + %dw

(where %du is the tangent vector to v, w = constant) These are good coordinates at a

point provided
ox (0x 0x
G (e ) )
ou (81} 8w) 7
If the three tangent vectors are mutually orthogonal then (u, v, w) are said to be orthog-

onal curvilinear.

For such coordinates, we introduce normalised tangent vectors, i.e.

ox

a hu u
ou ©
ox

a. = hv v
ov ©
ox

a_ — hw w
ow ¢

with hy, hy, by > 0 and ey, e,, e, are a right-handed orthonormal basis
e, X e, = ey

SO
dx = hye,du + hyey,dv + hye,dw

— dx? = h2du? + h2dv? + hZ dw?
(scale factors tell us the change in length)
Examples
(1) Cartesian coordinates x = (z,y, z) with h, = h, = h,, = 1 and

e, = X, e, =Y, e, =1z
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(2) Cylindrical polar coordinates have
x = (pcos ¢, psin 6, 2)
(p>0,¢€(0,2m)) or p= /2% +y? and tan ¢ = .

e, = p = (cos ¢,sin ¢,0)

and h, =h, =1 and hy = p.

(3) Spherical polar coordinates have
x = (rsinf cos ¢, rsin 0 sin ¢, r cos )

with » >0, 6 € [0, 7], § € [0,27).

/2 2
:>7“:~’x2—|—y2+z2, tangzl.i—i_yy tan¢:£
z X

We have
e, =T = (sin# cos ¢, sin § sin ¢, cos )
ep =06 = (cos 8 cos ¢, cos 0 sin ¢, — sin 0)
€y = ¢ = (— sin ¢, cos ¢, 0)

with h, =1, hg =1, hgy = rsinb.
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wd Al
/ -
F\ //l‘:'Cr
/’78..
< - T=Z
9 ..\ é‘e
N/r . = 7%
\

Vs
(@BS

Grad

If we shift x — x + dx then a scalar field f(x) changes as
df =Vf-dx

In a general coordinate system

_of of of
df = audu—i— 8Udv+ 6wdw
=V (hye,du + hye,dv + hye,dw)

_vof,  1of, | oLof
— V= st 5% G 0

using e, - €, = 0, etc.
For example in cylindrical polar

In spherical polar
_of.  10f 4 1 of -
Vi= 8rr+ r 899+ rsin96¢>¢

Div and Curl

In general coordinates we have
1 0 1 9 1 0

V = aeu% + EQU% + Eew%
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This now acts on vector fields
F = F,e, + F,e, + Fey

But now {ey,e,, ey} depend on (u,v,w) and are hit by derivatives = a little messy.

Claim.
1 0 0 0
V-F= e <8u(hvthu) + %(huthv) + aw(huthw)>
hueu hvev hwew 1
_ o) 0 0
VXF=| 5 50 55 Xhuhvhw
huFy hoFy  hyFy
Proof. Nope! O
For cylindrical polar
V.F— la(pr) 10Fy  OF;

p Op +p3¢+02
VxF:(lan 8F¢>ﬁ+(3Fp_8Fz>d;+1<a<pF¢>_an>i

p 0¢ 0z 0z ap P ap 0
Vif=V-Vf
_ 1o (of\, 1o o
“pop\"op) T2 og? T 922

For spherical polar

V_F:la(r?FT)Jr 1 O(sinOFy) 1 OFy

r2  or rsinf 00 rsinf 0¢
1 8(sin9F¢) 8F9 1 1 6Fr 8(7“F¢) ~ 1 8(7“F9) 8Fr A
F= - = - 0+~ - 0
VX rsin 6 < 00 ol r+r sinf 0¢ or Jrr or 00
Lo L0 (L1 1 (o 1 ay
ViI=05 "o ) Tsmeas "™ ) T 2anZe 002

Start of
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4 Integral Theorems

4.1 The Divergence Theorem

(Also known as Gauss’ theorem).

p
Theorem (Gauss’ Theorem). Given a smooth vector field F(x) over R3

/V FdV = /F.dS

with S = 0V and dS = dSn is pointing outwards.

1>

p

S AV

p
Note. The divergence theorem gives intuition for the meaning of V - F.

&

In a suitably small volume, over which V - F ~ constant,

/V~FdV:VV-F(x)
14

= V-F:Iiml/ F.-dS
v=0V Jov

— divergence = net flow into/out of region V'
V:-F >0 = net flow out

V-F <0 = net flow int

47



For example, MAxwell’s equations tell us

V -B =0 = magnetic field lines are continuous

V-E = L = electric field lines are continuous when electric charge density p(x) = 0

€0
But when p(x) # 0, the electric field can begin and end.

\@/
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Example. Let V' = solid hemisphere.
2P+ < R

and z > 0.

oV =51+ 55
-

We'll integrate F = (0,0, z + R)

= V.- F=1
2
:>/V-FdV:/dV:7rR3
v v 3
On St
’ n=~(,y2)
= —\T %
R 7y7
R
= F~n:z(z;—):Rcos€(cose+l)

(where z = Rcosf)

2w /2
— [ F-dS= / d¢/ dO(R?sinf) x Rcosf(cosh + 1) = gwRS
S1 0 0

On SQ,
n = (0,0,—-1)
— F.-n=-R
on Sy
— [ F.-dS =(-R) xnR?>=—nR?
Sa
2 3
SN F.-dS=-nR
S1+S52 3
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of Divergence Theorem. First, a simple proof. Divide V into cubes

Sz 5
2 Loy
vl
-
'
(’{/511') '
§¢
Flow of F through the (y, z) plane is roughly
OF,
[Fr(x + dx,y,2) — Fy(x,y, 2)]0ydz =~ dxdydz

ox

Do the same for the other sides

S \%

A concern: can we approximate the boundary with cubes? For example in 2d:

boun dwr
/ S

T Lenofh steps
z ,(’Nsw\ Lov%

(better proof). First note that

/V-FdV:/VF-dS
\% 0

holds in and R™. We start by proving the following;:
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-
Lemma. 2d divergence theorem:

/V-FdA:/F-ndS
D C

DN o
¢
~ ¢

Y+ ()
/V-FdA—/dx/ dya—F
D X y—(x) oy

For now assume D is convex so that the [ dy is over a single interval, rather than

o1



Then
/V~FdA_/ dz(F (2, y+(2)) — F(2,y—(2)))
D X

Next we change [ dz to [ dds, where s = arc length. Zoom in to the top curve Cy

92



Sy

A
N
/~
\Ls

7
%

The normal makes an angle
cosf=y-n

and
0x = cosfds =y -nds

along C';. Similarly, along C_,
dxr =y -nds

/V.FdA_ / ds (n-F(z,y;(z) + - F(z,y_(2))))
D X

:/ F-nds—i—/ F -nds
Cy _
:/F~nds

C

with C = C4 + C_. Finally if D is not convex, then just decompose C' into more
pieces. ]

Back to 3D theorem.
We use the same strategy. Take F = F'(x)z. Then

2y (2,y)
/V~FdV:/dA/ dzaj
v D 2 (z,y) 0z
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?/ \ . (”, ﬂ»

x D

/ V- -FdV = / dA[F(z,y,z+(c,y)) — F(x,y, z—(x,y))]
1% D

with limits zy the upper / lower surface of V.
Now convert [ dA into the surface integral over S = dV. This again includes an angle
cosf) = +n -z with n normal to S. This gives the result. O

Corollary. For a scalar field ¢

/ VodV = [ ¢ds
1% ov

Proof. Use divergence theorem with
F = ¢a

with a a constant.

/VV-(gba)dV:/avqﬁa-ds

— a- [/‘/ngdV—/avqbds] =0

But true V a implies the result. ]

4.2 An Application: Conservation Laws

Many things are conserved, for example energy, momentum, angular momentum, electric
charge. Importantly, all of these are conserved locally. This means that stuff moves
continuously to nearby points.
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Let p(x,t) be the density of the conserved object, for example electric charge. Then

szvpdv

is the charge in a region V. Conservation of ) means that there exists a vector J(x,t),
known as a current density such that

dp
otV I=0

This is the continuity equation.

The change of @ in some fixed region V is

dQ _

dp
|
at — Jy v

ot
:—/V‘JdV
v

:—/J-ds
S

(J is current flowing in/out of V). If J(x) = 0 on S then Q = 0. Often consider V = R?
and @ = 0 provided that J(x) — 0 suitably quickly as |x| — oc.

Example. A fluid has mass density p(x,t) and mass current J = pu with u(x,t)
the velocity field.
Mass is conserved

dp

But many fluids are incompressible with p = constant. Then continuity equation
gives

V-u=0
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Example (Diffusion). Consider a gas with energy density ¢(x,t). Energy is con-

served 5
5
- — -J=0
at—i—V

(J is heat current)
Fact 1:
e(x,t) = ¢, T(x,1)

where ¢, is heat capacity and T is temperature.
Fact 2: (Fick’s law) Heat current is due to temperature differences

J=—rVT

(k is thermal conductivity)

— T perp
ot

i.e. the heat equation with D = £,

Cy

4.3 Green’s Theorem in the Plane

Theorem (Green’s Theorem). Let P(x,y) and Q(x,y) be smooth functions on R?.

Then 5 e
/ —Q—— dA:?{Pda:—i-Qdy
A\0z Oy c

with C' = 0A traversed anti-clockwise.

Proof. Let F = (Q,—P)

SO
/V-FdA:/ <6Q—ap>dAZ%F'nds
A a\0x Oy c

by 2D divergence theorem.
Parametrise C' by

so the tangent vector is
and the normal is

so that n-t =0.

o6
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s
R

If s increases in an anti-clockwise direction, then n is outward pointing normal.

dy dx
F-on=0-21p==
n ds + ds

— %F-nds-j{de—FQdy
C C

O
( I
Note. We can also use this theorem when C' = JA has disconnected components.
Ae Fo W)
- Z
ﬁ D
ML:clookwice
¢ /OCA»AS@
The two line integrals across the gap cancel.
N\ J

o7



Example. P = 2%y and Q = xy?. Integrate over

J /////

'/,

|y

Claim.

/A(y2 —2%)dA = fca,dex + zy’dy

Proof. This is Example Sheet 1, Question 9 (both sides are equal to %8? at). O

4.4 Stokes Theorem

Theorem (Stokes Theorem). Let S be a smooth surface in R® with boundary
C = 0S. Then for a smooth vector field F(x)

/VxF-ds:]{F-dw
S C

To fix the orientation, if n is a normal to S and t is tangent to C then t x n should
point out of S.

o8



If n points towards you, then orientation of C is anti-clockwise.
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Note. Stokes theorem gives a meaning to curl. For suitably small S, V x F ~
constant and

/VxF-ds%An-(VxF)
S
where A is the area of S and n is the normal to S.

1
= n-(VxF)zlim—/F~dw
AJc

A—0

i.e. curl in direction n is circulation in plane normal to n. This also gives some
intuition for Stokes’ theorem:

CIAC
@QQ
e

At each point in S, V x F is circulation. But this cancels in the interior, leaving
only the boundary contribution.

Corollary. Irrotational = conservative:
V-FzO:%F-dsz V closed C'
C

= F=Vo¢

from Section 1.
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Example. S is a hemispherical cap of radius R with 0 <8 < a.

F = (0,22,0)
— VxF=(-2,0,z2)

and
/V x F-ds = 7R3 cosasin®«
S

from Section 2.
For the line integral, let

x(¢) = R(sin « cos ¢, sin asin ¢, cos )
where ¢ € [0, 27).
— dx = R(—sinasin ¢, sin a cos ¢, 0)d¢o

and

2m
% F.-dx :/ d¢Rxzsin acos ¢
C 0

2w
= / d¢R? sin? a cos v cos? ¢
0

= rR3sin? acosa
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Example. Cone 22 =22 +y> and a < 2 < b, a,b > 0.

)

surface is
x(p, ) = (pcos ¢, psin g, p)

where 0 < ¢ < 27 and a < p < b. Tangent vectors:

0x .
g \om e 1)
ox .
5= p(—sin ¢, cos ¢,0)
ox 0x :
= 8—p X 87(1) = (—PCOS¢7 —psmgﬁ,p)

(points inwards).
= ds = p(—cos ¢, —sin ¢, 1)dpde

Again integrate F = (0,22,0)

= V xF.-ds=(xcos¢+ z)pdpdo
= p*(1 + cos® p)dpdep

b 27
== /VxF-ds:/ dp/ dgp?(1 + cos® p)
S a 0
= (b —a3)

Compare to line integral over 95 = Cy — C,,.
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of Stokes’ Theorem. First show that Stokes = Green. Consider

F = (P(z,y),Q(z,y),0)

Take a flat surface S in z = 0 plane. Then

[ (0@ oP

/F-da::/de—i-Qdy
C C

This is Green’s theorem in the plane.

and

Now we show that Green = Stokes. Let x(u,v) be the parametrised surface S and
x(u(t),v(t)) be the parametrise boundary C' = 95.

3
IKa S>¢

V

Let A be the associated area in (u,v) plane and 0A the boundary. Now

Il
Q:\
b

&
(oW
<
+
3

o,

=4

with F, =F - %X and F, = F - .

63


https://notes.ggim.me/VC#lecturelink.16

by Green’s Theorem. Now

aFv_ﬁ F.ax
ou  Ou ov

0 ozt
_mQ%J

_OR 0w o o
~ 9zd Ou Ov ' Oudv

and S )
oF,, OF; 0z’ o' 9%t

=1 T LR

ov oxd v Ou Judv

ou ov  Ou Ov \dxi Ozt
oz ox! OF;
= Ok = 008 5.5 9
oxk 9zl OF;
L L R
ox 0Ox

ox 0x
= éF-dw—A(VxF)-<%x%>dudv

:/S(VXF)-ds

An Application: Magnetic Fields
One of the Maxwell equations reads
VxB= ,U,QJ

where B is magnetic field and J is current density. This is known as Ampere’s law.
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/VxB-ds:/B‘dm
S C

:/MOJ~ds
S
pol

where I is total current. Parametrise x = p(cos ¢, sin ¢, 0) (p is radius of S, ¢ € [0, 27)).

ox

t:%:

p(—sin ¢, cos ¢, 0)
Ansatz: B parallel to t everywhere, i.e. B = b(p)(— sin ¢, cos ¢, 0)
= Bt =pb(p)

and Maxwell tells us that

2T
§Bde [ aoob(p) = 2pipble) = ol
C 0

pol
— b(p) = £
(p) 2
I
= B(x) = &(—sinqb, cos ¢, 0)
2mp

This is the magnetic field outside a current carrying wire.
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5 Vector Calculus Equations

5.1 Gravity and Electrostatics

Two particles with mass m, M and charge ¢, ), separated by a distance r, experience

__ GMm,

e Newton’s force: F(r) = —=35"1
e Coulomb force: F(r) = 47257,2A

It’s useful to think of one particle with mass m, charge ¢, moving in the background of
the other.

Physically sensible if m < M, q¢ < @, write the force as
F(x) = mg(x) and F(x) = ¢E(x)

where g and E are gravitational field and electric field respectively.

GM .

gx) =~ 3
__Q
E(x) = 47r501"2r

These fields obey following equations:

/g-ds = —4nGM
S

/E-ds:Q
s €0

(M is the mass inside S)

(Q is the charge inside S).

Gauss’ Law

Integrate these vector fields over a sphere S of radius r

/g-ds = —4nGM
S

/E~ds:Q
s €0

and
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Note. The result is independent of r! The flux of the field tells us the total mass /
charge inside the sphere.

This is Gauss’ law (in integrated form).

In fact, Gauss’ law is equivalent to the force laws. Consider a sphere of radius R and
mass M, with some spherically symmetric mass distribution.

symmetry = g(x) = g(f)f

Consider a surface S which is a sphere of radius r > R.

g(x)-ds= [ g(r)ds
s s

= drr?g(r)
= —4AnGM by Gauss
GM

r2

r

= g(r) = —

which is Newton’s law.

Note. Don’t need a point mass M. It holds for any spherically symmetric mass
density.

This is known as the Gauss flux method.
We can also use Gauss’ law in other situations. Consider an infinite wire with charge
per unit length o.
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By symmetry E(r) = E(r)t (r cylindrical polar r? = 22 + y?)

L
/E-ds:27r7'LE(r) = Q:U—
S €0 €0
Note. E-n =0 on end caps so no contribution.
o
— E = r
(r) 2mweqgr

is electric field due to wire.

Note. Now % instead of 7% as field spreads out in R? instead of R3.

In R™, the electric / gravitational field would be F ~ 7’”%1

There’s a different way to write Gauss’ law. If the mass density is p(x) then from Gauss’
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theorem

/ V.gdV = / g-ds by divergence theorem
\% S
= —4AnGM by Gauss’ law
= —47TG/ p(x)dV
1%

— / (V-g+4nGp(x))dV =0
\4

But this is true for all volumes V'
= V.g=—41Gp(x).

This is Gauss’ law in differential form. It is the more sophisticated version of Newton’s
force law. Similarly
Pe(X)

€0

V-E=
(pe is electric charge density). This is the grown-up version of Coulomb’s law.

Potentials

It is a fact that the fields g and E are conservative, i.e.
g=-Vo and Ebf =—-Vo¢
for potentials ® and ¢. We’ve seen some consequences of this. We have

Vxg=VxE=0

%g-dw:y{E-dwzo
C C

and most importantly, it means that there is a conserved energy

and

1
Energy = §m>’<2 + m®(x) + qp(x)

Gauss’ law then becomes
V20 = 47Gp(x)

and )
pe(x
Vip= -0
¢ 2
This is the Poisson equation. The goal is to solve for ®(x) for some fixed “source” p(x).
If p =0, then we solve
V20 = 0.

This is the Laplace equation.
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5.2 The Laplace and Poisson Equations

We write
V2(x) = —p(x)

Solve for 1(x) given a source p(x) and suitable boundary conditions.

[ Note. V2 = 0 is linear, so if ¢; and vy are solutions, then so is 1 + 1. }

Solutions to the Laplace equation act as complementary solutions to Poisson.

Isotropic Solutions

V%) = 0 is a PDE. But with suitable symmetry, it becomes an ODE. For example,
spherical symmetry = 1 = (r) (r? = 2% + y? + 22).

d%yp 2

2 — —

Vw_dﬂ—i_r
_1d [ ,dy
r2dr Tdr
=0
A

— v=2+8

(A, B constants).
We can also look in cylindrical polar coordinates and seek solutions of the form

¥ =(r)
(r? = 22 + y?). Now we have

2 1d¢_1d<d¢>:0

T dr2 T rdr rdr Tdr

= ¢ = Alogr+ B

Note. In R", with n > 3, V¢ = 0 has the symmetric solution

wzrn—2+B

We can get more solutions by differentiating, for example if ¥ = % is a solution in R3,

then so too . d
B0 =a-v (1) =S

r r3

with d a constant vector. (This is a potential for a dipole in electromagnetism).
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Boundary Conditions
Often boundary conditions are important. For example: Solve

— <R
v21/): po T
0 r>R

with po constant. (for example gravitational potential for a planet with constant density).
To get a unique solution, we require

e ¢(r = 0) non-singular
e (r) —0) as r — o0
e 1) and 7/ continuous.
Can check that if ¢(r) = rP then
V2= p(p+ )P
(in R?). With spherical symmetry, we have

A 1
1/1(7“):?—1—3—6;)07“2 r<R

¥ (r = 0) non-singular = A =0. For r > R,

1[)(7‘):§+D r>R

Y(r — 00) =0 = D =0. Then we patch these together at r = R:

1
w(r:R):B—6p0R2:%
1
Wir=R)=—zpR=—1g
1 2 2
B épo(?{R —r°) r<R
iw(r)_{époff r>R
P i
/"’/,.'(
N
’ ; —> = : N
? R r-& ?
'ﬂrmv.'LJ--'o,‘,J : e

heid d:-Yrera oo

g “avil-akona| (,m,\;;,\'.
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General Results

If we solve V2 = —p in some region V C R3, then there are two common boundary
conditions on OV

e Dirichlet (D): Fix ¢(x) = f(x) on 9V

e Neumann (N): Fix n- Vi(x) = g(x) on 0V, with n the outward pointing normal.

Notation. Sometimes this is written as

dy _

or even g
ipzn.vqﬂ
dn

Claim. There is a unique solution to the Poisson equation on V with either D or
N boundary conditions specified on each 9V'.

( I
Note. Unique up to constant for N.
= _J

Proof. Let ¢ and o satisfy Poisson and
Y =11 — o
Then V?¢ = 0 with ¢») = 0 or n- V¢ = 0 on each 9V.

/ V. (V)Y = /V (V- Vb + $V2)dV

~ [ vupav
1%
= YV - ds by Divergence Theorem
ov
= [ ¢ V)ds
ov
=0 by one of the boundary conditions
— |Vy[?=0 inV
= Vy=0 inV

—> 1)is constant

If Dirichlet = % =0 o0on 0V = 1 = 0 everywhere. O
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|

Note. Strictly for bounded V', but we can work harder and extend to, for example
R3.

|

( I
Note. e If we can find, for example an isotropic solution, then this is the solu-
tion.
e Sometimes there may be no solution.
Example. Solve V% = p(x) with n- Vi) = g(x) on V. Then
/ V2ydV = Vi - ds
\% )%
so a solution can exist only if
/ pdv = / g(x)ds
\% )%
e The proof uses Green’s first identity:
/ PYV2pdV = —/V¢ -VydV + / oV - ds
\% S
(with ¢ = 1) This follows from the divergence theorem. Or by anti-symmetry
[ @v*s— vy = [ (Vi —uve)-as
This is Green’s second identity.
N\ J

Harmonic Functions

Solutions to the Laplace equation

V2 =0

are called harmonic functions.
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Claim (The mean value property). If ¢ is harmonic in a region V' that includes the
ball with boundary
Sy:lx—al=R

then

vla) = B(R) = s [ Swb(x)dS

i.e. the value in the middle of the sphere is equal to the average over the boundary
of the ball.

Proof. In spherical polar coordinates

dS = r?sin AdAd¢

D(r) = 417T/d¢/d9sin91/1(a:,97 ¢)

di 0
i(R) — ;/dgb/d@sinQaf(R,e,ﬁb)

dr
1 o dv¢ 1
irR? /SR oS = =g [, VY98
1 2
= av
dm R? /Ball Ve
=0

by the divergence theorem. But ¥(R) — v(a) as R — 0 hence 9)(R) = a for all R. [

Claim. A harmonic function can have neither a maximum nor a minimum in the
interior of V. The max / min lie on OV

Proof. If 3 a local maximum at a then 3 € such that ¢(x) < ¢(a) for all [x —a| < e.
But this contradicts that ¢ (R) = ¢(a) for 0 < R < e. O

e )
Note. Saddle points are allowed. The Hessian is

0%
0zl 07

has eigenvalues \;, but V%) = 0 = > ;A = 0so A\; must be both positive and
negative. (This has a loophole when all A; = 0 which is closed by our previous

proof).
L J
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Integral Solutions

We want to solve the Poisson equation

V2 = —p(x)
for a fixed p(x). Consider
A
v(x) =

for X fixed. Previously we showed that this solves V21 = 0, at least if r # 0. By what
happens at r = 07 Something must be going on because

/‘/VQz/JdV:/SVz/z-dS
= A

We can’t have V2¢ = 0 everywhere! Instead, 1) = ﬁ must actually solve the Poisson
equation for some source p(x). But we know p(x) = 0 for all x # 0. And we must have

[ pav =
The source is the 3D Dirac delta function:
p(x) = 26%(x)
Here 03(x) is an infinite spike at the origin, such that
[ 1800V = sx =0)

In particular

/V SB(x)dV =1

So, we’ve learned that ¢ = 4—;, does not solve the Laplace equation, but

Vi) = A3 (x) = Y(x) =

~ dar

Claim. V?¢ = —p has the integral solution

() = 1 p(x')

Tdn J x—x

dv’

4

(V' should include any region with p(x’) = 0)
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wln
r

Proof. Intuition is that you sum over solutions, weighted by p(x’) for each x'.

2 x :i x<' 2 1 /
R I e L

(here V differentiates x and treats x” as constant) but

v? < ! ) = —4m63(x — x')

[x — x|

(this is our previous result that V21 = —47§3(x) but with the origin shifted to x’)

!

— Vo= [ )5 - XV

= —p(x)

This powerful technique is known as the Green’s function approach.
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6 Tensors

6.1 What is a Tensor?

Not any list of n numbers constitutes a vector in R™. They come with certain responsi-
bilities.

We start with a point x € R™. To attach some coordinates to this, we first introduce a
basis {e;,7 = 1,...,n} such that

€e; - ej = 5@'
And we write x = x;e;. We call x; = (z1,...,2,) a “vector”. It’s a set of labels to
specify x.
Alternatively, we could use

e = Rije; (+)

We insist that €] - e;. = 0y;.
= R Rjrer - e = RjpRjp = 04
= RR' =1
Such matrices are called orthogonal. We write R € O(n). We have
det RR" = (det R)> =1 = det R = +1

If det R = +1, then R corresponds to a rotation and we write R € SO(n) (special

orthogonal).
If det R = —1, it is a reflection + rotation. Under a change of basis, x doesn’t change.
We have
X =x;€; = a:;e; = .’E;Rije]'
X-€eL =T — l’;le
inverting:

= ;= Rjjx;

A tensor T is a generalisation of these ideas to an object with more indices. When
measured with respect to the basis {e;}, a tensor of rank p (or p-tensor) has indices

T;

1ip
Under a change of basis (x) we have the tensor transformation rule

T

i1ip

= Riljl T Ripjijl"'jp
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Note. 0-tensor is a number
1-tensor is a vector
2-tensor is a matrix such that TZ/] = RiypRjTy.

Example. There is one special rank 2 tensor in R™:

1 i=j
0ij = )
0 otherwise
This is the same in all bases since
8 = RixRji0k = i

It’s an example of an invariant tensor.

Tensors as Maps
There is an equivalent, coordinate independent view. A p-tensor is a multi-linear map
T:R"x---xR" >R
N—
P

such that
T(a, b, s ,C) = T’iy--ipailbizcip

(multi-linear = linear in each entry seperately).

The tensor transformation rule ensures that the map is independent of the choice of
basis.

ot Y /
T(aa ba T C) - T:iynipahbig T Cip

= (Riyj - Riyjp) Tjrjp X (Riyiy Qi) -+ - (RikaCkp)

= Tjr"jpajlbjz © Gy

Alternatively, we can think of a tensor as a map between lower rank tensors. For example,
a p-tensor can be viewed as a map

T:-R"x. . - xR" 3 R"
N———
p—1

The map is

i = Ejl"'jp*lbjl Gy
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This is the way that tensors originally appear in maths and physics, typically as a map
from vectors to vectors.
u=7Tv = uTiv;
T is a matrix but, importantly, transforms as a tensor so the equation holds in all bases
T;; = RxRji T

or

T' = RTRT

Tensor Operations
o If S, T are tensors of the same rank, then so is S + 7 and AT for A € R.

e If S is a p-tensor and T is a g-tensor then we can form a (p + ¢)-tensor known as
the tensor product
(S @ T)iy-ipjijg = Sir-ip Ljijg
for example, given two vectors a and b we can form the matrix
(a & b)i]’ = aibj
e If T is a p-tensor then we can construct a (p — 2)-tensor by contraction:
5isz‘jk:1~--k:p_2 = Thiky ks

for example
LT =1

for a 2-tensor.

We can combine the tensor product and contraction. If P is a p-tensor and @ is a ¢-
tensor, we can form a (p + g — 2)-tensor. For example, contraction on the first index
gives
Piky by 1 Qily 1y
for example given vectors a, b,
6ijaibj =a---b
is a zero-tensor. This is just the usual inner-product. Another example is matrix multi-
plication.
How do we know if a bunch of numbers T'...form a tensor?
If T is a (p + q)-tensor then for every g-tensor u,
Virewip = Tigipgn-jg Ui
is a p-tensor.

Conversely, if v is a p-tensor for every g-tensor u, then T" is a (p + ¢)-tensor. This is the
quotient rule.
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Proof. Consider
ujl"'jq = le e djq
By assumption
Uiy iy = Til"‘ip]'l'“jchl e djq
is a tensor, so
gy * - bz'pvil-uz'p = Ti1'~~ipj1"~jqai1 e biple cee djq

is a scalar, V a,---b,c,---d hence T must be a (p + ¢)-tensor. O

(Anti)-Symmetry

A tensor that obeys
Lijpq = £TLjip-q

is said to be (anti)-symmetric in 4, j (anti for —). This is a basis independent statement:

Ti/jp'“q = RikRﬂRpT T Rquklr---s
= :I:RikRijpT T Rqulkzr-ns
_ /
- iTjipw

If T is (anti)-symmetric in all indices it is said to be totally (anti)-symmetric. A totally
anti-symmetric p-tensor in R™ has (Z) independent components, and vanishes in p > n.

In R3, a 2-tensor T;; decomposes as

1
Sij = 5Ty + Tij)

and S;; further decomposes as
1
Sij = Pij + 3Q0i

where Pj; is traceless (i.e. P = 0) and the trace of S;; is Q.
In R3 we have another invariant tensor Eijk (see below) and we can write

1

Aij = By = BkifklmAlm

So a 3 x 3 matrix can be written as

1

Tij = Pij + eijrBr5 Q0

with P, B and @ are themselves tensors.

80



Invariant Tensors

A tensor that obeys
T =Rij, R

i1+ ingp Ljvegp = Liaewiy

for all R is called an invariant tensor or is said to be isotropic.

Any rank 0 tensor is isotropic. There are no rank 1 isotropic tensors. There is a rank 2,
and in R3, a rank 3 invariant tensor:

. 52’]’ with (52,] == Rikle5kl =y

® Sk with
Egj]g = RilemRknElmn
= (det R)eqji
= Eijk

Claim. The only isotropic tensors in R3 of rank 1 < p < 3 are
Tij = adij

and
Tk = Beijr

with «, 8 constant.

Proof. Look for a rank 1 tensor. Must have

T = RyT; =T

for
-1 0 O
Rj=(0 —-10
0 0 1

hence 7] = =Ty and T) = —T5 so Ty = T5 = 0. A similar argument gives T3 = 0.

Look for a rank 2 tensor: o
Tj; = Ry RjTy = Tj

with
+1 0
Rj=|-1 0 0
0 1
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(5 rotation about z-axis) This gives Tj3 = Tps and T3 = —T13 hence T3 = T3 = 0.

Also T]; = T»y. Similar arguments show that T;; = 0 for i # j and T11 = Tao = T33 = «

— Tij = aéij

For rank 3,
Tz‘/jk: = RuRjpRyqTipg = Tijk
Use
-1 0 0
R = 0 -1 0 — T1/33 = —T133,T1/11 = —T111
0 0 —+1

= Tjjx = 0 unless 1, j, k distinct. Use R = R to show that T]yy = —Th13
= Tijx = Beijk

O

All higher rank invariant tensors in R? are built from gijk and d;5, for example isotropic
rank 4 tensor has the most general form

Tijki = a;j0r; + Birdji + v0iudjk
for a, B, some constants.

Invariant Integrals

We can sometimes use this to do integrals, for example

Tij---k = / f(r)xi:vj s xde
v
(V' is a spherically symmetric region and r = |x|). Under a rotation
Tz/yk: = RipRjq -+ RirTpgr
= / flr)aial - apdV
v
(2} = Rjpxp). Change variables to 2’. Both r = |x| and V are invariant
e T =Ty

so must be proportional to an invariant tensor.
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Example. Consider the integral over 3D ball of radius R:
15 = / p(r)x;x;dV
1%
Necessarily = ad;; for some a. Take the trace:

= /p(r)r2dV: 3a
\%4

1
— T’ij = 35ij/‘/p(r)r2dV

Start of
lecture 22 Tensor Fields

A tensor field over R? assigns a tensor Tj..,(x) to each point x € R3. This generalises
the vector field
F:R® > R3
to
T:R?—R™
with m = # components of the tensor.

Tensor fields have one further operation: we can differentiate to build higher rank tensors.

Example. If ¢ is a scalar field then

99

Vd) = @ei

is a vector field, and so
¢
oxt

transforms as a 1-tensor.

More generally, if T" is a p-tensor field then we can construct a (p + ¢)-tensor field
0 0

Kipigioip (%) = o+ o Ty ()

To check that this is indeed a tensor, we use
/ /
T, = Rijxj - Ij = Rijxi

o  dx; 0 )

— - = Rji—
oz, Oz} Ox; T O

0
(%, transforms as a tensor.)
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6.2 Physical Examples

The simplest examples of tensors are just matrices.

In a material, an applied electric field E will give a current J is given by
Jl‘ = Uz'jEj

where 035 is the conductivity tensor. This is the grown-up version of Ohm’s law.

( I
Note. In 3D, isotropic materials necessarily have

Tij = 004

with ¢ the conductivity.
In 2D (i.e. thin materials) then isotropy means

0ij = 0za0ij + OzyEij

. Oz (5my
N _5xy 5x1‘
(0zy is the Hall conductivity).

- J

In Newtonian mechanics, a rigid body has
L=]w

(L is angular momentum, w is angular velocity), where I is the inertia tensor. If the
body is made of particles of mass m,, rotating as

X, = W X Xg

then
L= Zmaxa X Xgq
a
= Zmaxa X (w X Xg)
a
= Zma(lxa|2w — (Xq - wW)Xq)
a
= L= Iijwj
with

Iij = Zma(|xa|25ij — (Xa)i(Xa);)
a
For a continuous object,

I = /V p(x) (1x[263; — i) AV
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Example (A Sphere). A ball of radius R and density p(r) has

lij = / p(r) (16 — wiwj)dV
14

R
= S—W&j drp(r)rt
3 0
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Example (A Cylinder).

M = 2ma’Lp

In cylindrical polar,
T = 1COoS ¢ r =rsing¢

I3z = / p(a® +y*)dv
v
2 a +L
:p/ d¢/ dr/ dz -r-7r?
0 0 L
= prLa*

I3g = / ply* + 2%)dv
v

2 a
= p/ dqb/ dr/ +Lr(r?sin? ¢ 4 22)
0 0 -L

1 2
= pra’L <2a2 + 3L2>
= Iy by symmetry

Lz = —p/ xzdV
1%

2w a +L
= —p/ dng/ dr/ dzr?z cos ¢
0 0 =1L

2

= —p/ d¢ cos pC'
0

=0

All other off diagonal entries vanish similarly, so for a cylinder
G a1l
I=diag (M| —+= | ,M(—+=),=Md?
w5+ 5) (50 5) )
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For a general body, and a general choice of basis, I;; will not be diagonal. However,
I;; = Ij; so there exist an R € SO(3) such that

I' = RIR" = diag(Iy, I, I3)

i.e. every body has a preferred set of axes such that I is diagonal.

/

From L = Jw, if the angular velocity, w is aligned with one of these axes then L || w.
Otherwise L is not parallel to w and this is the reason things wobble! (see classical
dynamics).
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