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Start of
lecture 1 Introduction

We will learn to differentiate and integrate functions (or maps) of the form

f : Rm︸︷︷︸
domain

→ Rn︸︷︷︸
codomain

An element of Rm or Rn is a vector so this subject is called vector calculus.

Examples of Maps

(1) A function f : R → Rn defines a curve in Rn. In physics, we might think of R as
time and Rn as physical space and write this as

f : t 7→ x(t)

with x ∈ Rn. (Obviously we should take n = 3). Generalising, a map

f : R2 → Rn

defines a surface in Rn, and so on.

(2) In other applications, the domain Rm might be viewed as physical space. For exam-
ple, in physics a scalar field is a map

f : R3 → R

for example temperature T (x) is a scalar field, as is the Higgs field.
A vector field is a map

f : R3︸︷︷︸
physical space

→ R3︸︷︷︸
somethinge more abstract

for example the electric field E(x) and magnetic field B(x) are vector fields.
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1 Curves

We consider maps of the form
f : R → Rn

Assign a coordinate t to R and use Cartesian coordinates on Rn.

x = (x1, . . . , xn) = xiei

where ei is an orthonormal basis such that ei ·ej = δij . Note that summation convention
is used here. (For R3 we also use notation {ei} = {x̂, ŷ, ẑ}.)

The image of of the function f is a parametrised curve x(t), with t the parameter.

Examples

(1) Consider the map R → R3 given by

x(t) = (at, bt2, 0)

The curve C is the parabola a2y = bx2 in the plane z = 0.

x

y

z

Note. When plotting the curve, we lose information about the parameter t.

(2) Consider x(t) = (cos t, sin t, t)
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The curve C is a helix.

The choice of parametrisation is not unique, for example consider

x(t) = (cosλt, sinλt, λt).

This gives the same helix for all λ ∈ R \ {0}.
Sometimes the choice of parametrisation matters, for example if t is time and x(t) is
position, then the velocity is proportional to λ. But we will see that some questions are
independent of the choice of parametrisation.

1.1 Differentiating the Curve

A vector function x(t) is differentiable of t if, as δt→ 0, we have

x(t+ δt)− x(t) = ˙x(t)δ(t) +O(δt2).

If ẋ(t) exists everywhere, the curve is said to be smooth.

Note. “Big O” notation O(δt2) means terms proportional to δt2 or smaller.

In physics, dot is usually used for time derivatives, for example ẋ(t) and prime for spatial
derivatives, for example f ′(x).
In maths, these are used interchangeably.

Some notation: we write
δx(t) = x(t+ δt)− x(t)

The derivative is then

x ≡ dx

dt
:= lim

δt→0

δx

δt
.

Start of
lecture 2
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We will sometimes write dx = ẋdt.
If we’re in Cartesian coordinates then we just differentiate vector components

x(t) = xi(t)ei =⇒ ẋ(t) = ẋt(t)ei

Note. If we have a function f(t) and vectors g(t) and h(t) then the following
identities hold

d

dt
(fg) = ḟg + f ġ

d

dt
(g · h) = ġ · h+ g · ḣ

d

dt
(g × h) = ġ × h+ g × ḣ

(just apply the product rule to the components.)

Tangent Vectors

The derivative ẋ(t) is the tangent vector to the curve

C

O

x(t) x(t+ δt)

δx

Note. The direction δx(t) is independent of the parametrisation (at least up to a
sign), while the magnitude does depend on parametrisation.

For example, these two maps give the same curve C in R2

x(t) = (t, t) =⇒ ẋ = (1, 1)

x(t) = (t3, t3) =⇒ ẋ = 3t2(1, 1)

C is just a line in R2. In the second case ẋ = 0 at t = 0 but this is due to the
parametrisation, not to C itself.
A parametrisation is regular if ẋ(t) ̸= 0 ∀ t.
In what follows, we’ll assume regular parametrisations.
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The arc length is the distance along the curve. For nearby points

δs = |δx|+O(|δx|2)
= |ẋδt|+O(δt2)

=⇒ ds

dt
= ±|ẋ|

(± depends on whether s increases or decreases as t increases.)
The arc length is defined by

s =

∫ t

t0

dt′|ẋ(t′)|

Note. For t > t0, s > 0, and for t < t0, s < 0.

Claim. s is independent of our choice of parametrisation.

Proof. Pick a different choice τ(t). Assume dτ
dt > 0. Then

dx

dt
=

dx

dτ

dτ

dt

and

s =

∫ t

t0

dt′
∣∣∣∣dxdt′

∣∣∣∣
=

∫ t

t0

dt′
dτ ′

dt′

∣∣∣ x
τ ′

∣∣∣
=

∫ τ

τ0

dτ ′
∣∣∣∣ dxdτ ′

∣∣∣∣
(τ0 = τ(t0))

This means that s itself is a natural parametrisation of the curve. We can think of x(s).

Because ds
dt = |ẋ(t)|, the associated tangent vector dx

ds has
∣∣dx
ds

∣∣ = 1.

Curvature and Torsion

A curve C parametrised by the arc length s, has tangent vector

t =
dx

ds
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Note. t is not the same thing as our previous parameter!

This has |t| = 1.

The curvature κ(S) is

κ(s) =

∣∣∣∣d2xds2

∣∣∣∣ = ∣∣∣∣dtds
∣∣∣∣

To get some intuition, consider a circle

x(t) = (R cos t, R sin t)

Use ds
dt = |ẋ| to get s = Rt.

=⇒ x(s) = (R cos
( s
R

)
, R sin

( s
R

)
=⇒ κ(s) =

1

R

(which is constant.)

Define the (principle) normal

n =
1

κ

d2x

ds2
=

1

κ

dt

ds

(when κ(s) ̸= 0)

Note. |n| = 1.

Claim. If κ ̸= 0, then n · t = 0.

Proof. t · t = 1 =⇒ d
ds (t · t) = 2t · dt

ds = 0.

Hence n and t define the oscillating plane.

The curvature κ(s) of a curve coincides with that of a circle touching C, at S, lying in
the plane.
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Note. Because t · dt
ds = 0, for curves in R3, we can also compute the curvature as

κ =

∣∣∣∣t× dt

ds

∣∣∣∣ = |t|︸︷︷︸
=1

∣∣∣∣dtds
∣∣∣∣

Start of
lecture 3 Example. Let C be the helix x(t) = (cos t, sin t, t). Then ẋ(t) = (− sin t, cos t, 1).

=⇒ ds

dt
=

∣∣∣∣dxdt
∣∣∣∣ = √

2 =⇒ s =
√
2t.

The distance along the curve between x(0) = (1, 0, 0) and x(2π) = (1, 0, 2π) is

s =

∫ 2π

0
dt|ẋ| =

√
2× 2π =

√
8π

x(s) = (cos(s/
√
2), sin(s/

√
2, s/

√
2)

t =
dx

ds
=

1√
2

(
− sin

(
s√
2

)
, cos

(
s√
2

)
, 1

)
dt

ds
=

1

2︸︷︷︸
κ

(
− cos

(
s√
2

)
,− sin

(
s√
2

)
, 0

)
︸ ︷︷ ︸

n

.

For curves in R3, define the binormal

b = t× n

Note. t, n and b are an orthonormal basis for each s (at least with κ(s) ̸= 0).
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Because |b| = 1 we have b · db
ds = 0. Moreover,

t · b = 0 =⇒ dt

ds
· b+ t · db

ds
= 0

=⇒ κn · b+ t · db
ds

= 0

=⇒ t · db
ds

= 0

so db
ds is ⊥ to b and t hence db

ds is parallel to n.

Define the torsion, τ(s) as
db

ds
= −τ(s)n

The torsion measures how much the curve twists out of the plane. (It vanishes for planar
curves.)

Note.
dt

ds
= κ(s)(b× t)

db

ds
= τ(s)(t× b)

These are six first order DEs in six unknowns t and b. For fixed κ(s) and τ(s),
there is a unique solution if we’re given t(0) and b(0).
i.e. κ and τ specify C up to translations / rotations.

1.2 Line Integrals

A scalar field ϕ(x) is a map
ϕ : Rn → R

We would like to integrate ϕ(x) along a curve C given by x(t) in a way that is independent
of the parametrisation.

We work with the arc length. Let x(s) be a curve C that urns from x = a to x = b.
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We define the line integral from a to b∫
C
ϕds =

∫ sb

sa

ϕ(x(s))ds

where we take sa < sb.

Note. This is defined so that
∫
C ds is the length of C and is always positive. In

other words, the line integral from a to b gives the same answer as b to a.

If you’re given the curve x(t) using some other parameter, with x(ta) = a and x(tb) =
b and ta < tb then ∫

C
ϕds =

∫ bb

ba

ϕ(x(t))
ds

dt
dt

=

∫ tb

ta

ϕ(x(t))|ẋ|dt

(using ds
dt = |ẋ|. This factor |ẋ| ensures independence of parametrisation.)

A vector field F(x) is a map
F : Rm → Rn.

The line integral of a vector field F(x) along a curve C, parametrised by x(t), from
x(ta) = a to x(tb) = b is ∫

C
F · dx =

∫ tb

ta

F(x(t)) · ẋ(t)dt

This is the integral of F tangent to the curve (for example τ = τ(t)).

Note. This time the direction of the integral matters. The integral from a to b is
the negative of the integral from b to a.

The choice of direction along C is called an orientation.

Again: the line integral of a scalar field does not depend on the orientation of C; the
line integral of a vector field does depend on the orientation.

Start of
lecture 4
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Example. Let F(x) = (xey, z2, xy). For C1 let x(t) = (t, t, t), and for C2 let
x(t) = (t, t2, t3). We’ll integrate from (0, 0, 0) to (1, 1, 1).

For C1: F(t) = (tet
2
, t6, t3) and ẋ(t) = (1, 2t, 3t2).

=⇒
∫
C1

F · dx =

∫ 1

0
dt(tet

2
+ 2t7 + 3t5)

=
1

4
(1 + 2e)

For C2: F(t) = (tet, t2, tz) and ẋ(t) = (1, 1, 1).

=⇒
∫
C2

F · dx =

∫ 1

0
dt(tet + 2t2)

=
5

3

Note. Answer depends on C.

Sometimes we will integrate along a closed path C, with a = bf . The line integral is the
circulation of F around C, denoted as ∮

C
F · dx

Sometimes we will have a piecewise smooth curve C = C1 + C2, and then we define∫
C1+C2

F · dx =

∫
C1

F · dx+

∫
C2

F · dx.
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The curve −C is the curve C but with the opposite orientation, so∫
−C

F · dx = −
∫
C
F · dx

for example let C = C1 − C2 in our example. Then∮
C
F · dx =

∫
C1

Fbf · dx−
∫
C2

F · dx =
1

4
(1 + 2e)− 5

3

1.3 Conservative Fields

Question: Do there exist F such that
∫
C F·dx is independent of the path chosen between

two fixed end points a and b i.e.∫
C1

F · dx =

∫
C2

F · dx?

(for all C1 and C2 with the same end points).

Equivalently, considering C = C1 − C2, this would mean∮
C
F · dx = 0

for all closed paths C.

The gradient

Consider a scalar field ϕ : Rn → R. The partial derivatives are defined to be

∂ϕ

∂x1
= lim

e→0

1

e
[ϕ(x1 + e, x2, . . . , xn)− ϕ(x1, x2, . . . , xn)]
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and similar for ∂ϕ
∂x2 etc. The function is differentiable if all n partial derivatives exist.

We write:

∂iϕ =
∂ϕ

∂xi
i = 1, . . . , n

Also, it’s not uncommon to stress which variables are held fixed by writing(
∂ϕ

∂x1

)
x2,...,xn

Let {ei} be orthonormal basis of Rn. Then the gradient of a scalar field is vector field,
defined as

∇ϕ =
∂ϕ

∂xi
ei

Note. Sometimes the ∇ is written with bold or underline.

If we want to compute how ϕ changes in some direction n̂ with |n̂| = 1, then we
compute the directional derivative n̂ · ∇ϕ.

This is maximised at any point x by picking n̂ ∥ ∇ϕ. But this means that ∇ϕ(x) points
in the direction in which ϕ(x) increases most quickly.

Back to Conservative Fields

A vector field F is called conservative if it can be written as

F = ∇ϕ

for some ϕ called a potential.

Claim. ∮
C
F · dx = 0 ∀ C

if and only if F is conservative.

Proof. If F = ∇ϕ then along any open curve C, parametrised by x(t), we have∫
C
F · dx =

∫
C
∇ϕ · dx

=

∫ tb

ta

∂ϕ

∂xi
dxi

dt
dt

=

∫ tb

ta

d

dt
ϕ(x(t))dt

= ϕ(x(tb))− ϕ(x(ta))

13



i.e. only depends on the end points. Conversely, suppose that∮
C
F · dx = 0

Let ϕ(0) = 0 and define

ϕ(y) =

∫
C(y)

F · dx

Then

∂ϕ

∂xi
(y) = lim

e→0

1

e

[∫
C(y+eei

F · dx−
∫
C(y)

]

= lim
e→0

1

e

∫ y+eei

y
F · dx

= lim
e→0

1

e
(eFi)

= Fi

Start of
lecture 5

Question: Given F, how do we know if its conservative?

Answer: There is a check. If Fi =
∂ϕ
∂xi then

∂Fi

∂xi
=

∂2ϕ

∂xi∂xj
=
∂Fj

∂xi
∀ i, j.

This is a necessary condition. We will later see that this is also a sufficient condition (if
F is everywhere well defined).

Example.
F = (3x2y sin z, x3 sin z, x3y cos z).

Check:
∂1F2 = 3x2 sin z = ∂2F1

∂1F3 = 3x2y cos z = ∂3F1

∂2F3 = x3 cos z = ∂3F2.

Indeed F = ∇ϕ with ϕ = x3y sin z, so
∫
C F · dx depends only on the end points of

C.

14
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Exact Differentials

Given a function ϕ(x), the differential is

dϕ =
∂ϕ

∂xi
dxi = ∇ϕ · dx.

Given a vector field F, the object F · dx is exact if it can be written as

F · dx = dϕ

An Application

The trajectory x(t) of a particle is governed by Newton’s second law

mẍ(t) = F(x)

We define the kinetic energy

k =
1

2
mẋ2

This changes over time as

k(t2)− k(t1) =

∫ t2

t1

dk

dt
dt

=

∫ t2

t1

mẋ · ẍdt

=

∫ t2

t1

F · ẋdt

=

∫
C
F · dx

This is called the work done. For conservative forces

F = −∇V

Then

k(t2)− k(t1) =

∫
C
F · dx = −V (t2) + V (t1)

=⇒ F(t) = k(t) + V (t) = constant.

A Subtlety

Consider

F =

(
− y

x2 + y2
,

x

x2 + y2

)
Check

∂xFy = ∂yFx =
y2 − x2

x2 + y2

15



and indeed F = ∇ϕ with ϕ = tan−1(y/x). Now integrate F around

x(t) = (R cos t, R sin t) 0 ≤ t < 2π

∮
C
F · dx =

∫ 2π

0
F · dx

dt
dt

=

∫ 2π

0

(
−sin t

R
(−R sin t) +

cos t

R
(R cos t)

)
dt

=

∫ 2π

0
dt

= 2π

̸= 0

Why?!

It’s because F isn’t defined at the origin. Moreover, ϕ is discontinuous along the x = 0
axis.

Our previous claim that
∮
C F · dx = 0 only holds when ϕ is a continuous function, or

when F is defined inside C in R2.
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2 Surfaces (and Volumes)

2.1 Multiple Integrals

Area Integrals

Consider a region D ⊂ R2. We want to integrate a scalar field ϕ(x, y) over D, i.e.∫
D
ϕdA

(dA = dxdy is the area element).

Note. It’s sometimes written
∫∫

D ϕdA.

Basic idea:

∫
D
ϕ(x)dA =

∑
n

ϕ(xn)δA

Start of
lecture 6 Note. For ϕ = 1,

∫
D dA is the area of D.

To evaluate the area integral, we split the region D into strips.

17

https://notes.ggim.me/VC#lecturelink.6


Do
∫
dx for some fixed y, and then do

∫
dy.∫

D
ϕdA =

∫ b

a
dy

∫ x2(y)

x1(y)
dxϕ(x, y)

(x1(y) and x2(y) trace the outline of D).

Note. This is written as
∫
dx(integrand) instead of

∫
(integrand)dx. You do

∫
dx

first, and then
∫
dy.

Alternatively, we could divide D as

∫
D
ϕdA =

∫ d

c
dx

∫ y2(x)

y1(x)
dyϕ(x, y)

Now do
∫
dy first and then

∫
dx.

For suitably well behaved ϕ and D, any way of splitting up
∫
dA gives the same result.

(Fubri’s theorem).
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Example. Let ϕ(x, y) = x2y and D be the triangle

∫
D
ϕdA =

∫ 1

0
dy

∫ 2−2y

0
dxx2y

=

∫ 1

0
dyy

[
x3

3

]2−2y

0

=
8

3

∫ 1

0
dyy(1− y)3

=
2

15

or ∫
D
ϕdA =

∫ 2

0
dx

∫ 1−x2/2

0
dyx2y

=

∫ 2

0
dxx2

[
1

2
y2
]1−x2/2

0

=
1

2

∫ 2

0
dxx2

(
1− 1

2
x

)2

=
2

15

It is often useful to evaluate integrals using something other than cartesian coordinates.
Consider a change of variables

(x, y) 7→ (u, v).

We assume that this map is smooth and invertible. We can then use (u, v) as coordinates
on R2.

19



How do we do the integral in (u, v) coordinates?

Claim. The area integral can be written as∫
D
ϕdA =

∫
D′

dudv|J(u, v)|ϕ(u, v)

Here the Jacobian is the modulus of the determinant

|J(u, v)| =
∣∣∣∣∂x∂u ∂x

∂v
∂y
∂u

∂y
∂v

∣∣∣∣
We will also write the matrix

J(u, v) =
∂(x, y)

∂(u, v)

Proof. We sum over the small parallelograms sandwiched between u, v = constant lines.
Let x = x(u, v) and y = y(u, v).

=⇒ δx =
∂x

∂u
δu+

∂x

∂v
δv

and

δy =
∂y

∂u
δu+

∂y

∂v
δv

=⇒
(
δx
δy

)
=

(∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)(
δu
δv

)

20



So

a =

(∂x
∂u
∂y
∂u

)
δu

b =

(∂x
∂v
∂y
∂v

)
δv

The area of parallelogram is

δA = |a× b| =
∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ δuδv = |J |δuδv.

An Example: 2D Polar Coordinates

Plane polar coordinates are defined by

x = ρ cosϕ y = ρ sinϕ

with ϕ ∈ [0,∞) and ϕ ∈ [0, 2π). Then

J =
∂(x, y)

∂(ρ, ϕ)
=

∣∣∣∣cosϕ −ρ sinϕ
sinϕ ρ cosϕ

∣∣∣∣ = ρ

The area element is
δA = ρδρδϕ

21



As an example, let D be the region x, y ≥ 0 and x2 + y2 ≤ R2.

This is 0 ≤ ρ ≤ R and 0 ≤ ϕ ≤ π
2 . We will integrate f = e−(x2+y2)/2 = e−ρ2/2.∫

D
fdA =

∫ π/2

0
dϕ

∫ R

0
dρρe−ρ2/2

=
π

2
[−e−ρ2/2]R0

=
π

2
(1− e−R2/2)

Start of
lecture 7
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Note. As R → ∞, we integrate over the whole of x, y ≥ 0 quadrant. In cartesian
coordinates, we have∫ ∞

0
dx

∫ ∞

0
dye−(x2+y2)/2

=

(∫ ∞

0
dxe−x2/2

)(∫ ∞

0
dye−x2/2

)
=

(∫ ∞

0
dxe−x2/2

)2

=
π

2

=⇒
∫ ∞

0
dxe−x2/2 =

√
π

2

Volume Integrals

We now generalise to integrals over a region V ⊂ R3. We have∫
V
ϕ(x)dV = lim

δV→0

∑
n

ϕ(xn)δV

We again perform the integral one coordinate at a time. Again, the order doesn’t matter.

∫
V
ϕdV =

∫
D
dA

∫ x2(x,y)

z1(x,y)
dzϕ(x, y, z)

or
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∫
V
ϕdV =

∫
dz

∫
D(z)

dxdyϕ(x, y, z)

Under an invertible, smooth change of coordinates

(x, y, z) 7→ (u, v, w)

we have
dV = |J |dudvdw

with

J =
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣
The proof is similar to before. For example, spherical polar coordinates are

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ
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with r ≥ 0, θ ∈ [0, π] and ϕ ∈ [0, 2π). We find J = r2 sin θ

=⇒ dV = r2 sin θdrdθdϕ

Cylindrical polar coordinates are

x = ρ cosϕ

y = ρ sinϕ

z = z

25



with ρ ≥ 0 and ϕ ∈ [0, 2π). Now J = ρ and

dV = ρdρdϕdz.

Examples

(1) A spherically symmetric function f(r) integrated over a ball of radius R∫
V
fdV =

∫ R

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ r2 sin θ︸ ︷︷ ︸

J

f(r)

= 2π[− cos θ]π0

∫ R

0
drr2f(r)

= 4π

∫ R

0
drr2f(r)

If f = 1 =⇒ V = 4πR3

3 = volume of the ball.

(2) What is the volume of a ball of radius R with cylinder of radius s < R removed
from the middle? .image In cylindrical polars, V is s ≤ ρ ≤ R and −

√
R2 − ρ2 ≤

z ≤
√
R2 − ρ2 and 0 ≤ ϕ > 2π. So

Vol =

∫
V
dV

=

∫ 2π

0
dϕ

∫ R

s
dρρ

∫ +
√

R2−ρ2

−
√

R2−ρ2
dz

= 2π

∫ R

s
dρ2ρ

√
R2 − ρ2

=
4π

3
(R2 − s2)3/2

(3) A hemisphere H of radius R and z ≥ 0 has charge density f(z) = f0
z
r with f0 =

constant. What is the total charge?
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Use spherical polars.
r ≤ R

0 ≤ ϕ ≤ 2π

0 ≤ θ ≤ π

2

=⇒
∫
H
fdV =

f0
r

∫ 2π

0
dϕ

∫ π/2

0
dθ

∫ R

0
dr r2 sin θ︸ ︷︷ ︸

J

r cos θ︸ ︷︷ ︸
z

=
2πf0
R

[
r4

4

]R
0

[
1

2
sin2 θ

]π/2
0

=
1

4
πR3f0

(4) To compute the centre of mass of an object, we need vector valued integrals. Let
ρ(x) be the density

=⇒ mass M =

∫
V
ρ(x)dV

and center of mass is

X =
1

M

∫
V
ρ(x)xdV

For example for the solid hemisphere of constant density ρ

M =

∫
H
ρdV =

2π

3
ρR3

and X = (X,Y, Z).

X =
ρ

M

∫ 2π

0
dϕ

∫ R

0
dr

∫ π/2

0
dθx r2 sin θ︸ ︷︷ ︸

J

= 0
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Similarly Y = 0.

Z =
ρ

M

∫ 2π

0
dϕ

∫ R

0
dr

∫ π/2

0
dθzr2 sin θ =

3R

8
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We define surfaces in R3 by

� A function F (x, y, z) = 0

� A paramterised surface is a map

x : R2 7→ R3

At each point on the surface, the normal vector n points away in a perpendicular direc-
tion.

Claim. For the surface F (x) = 0, n ∥ ∇F .

Proof. m · ∇F is the rate of change of F in the direction m. There are two linearly
independent vectors m1 and m2 that lie tangent to the surface and obey mi · ∇F = 0,
i = 1, 2. The normal vector n is perpendicular to m1 and m2 and so n ∥ ∇F .

We usually define

n = ± 1

|∇F |
∇F

For a parametrised surface x(u, v) the tangent vectors are

∂x

∂u
and

∂x

∂v

The normal vector is n ∥ ∂x
∂u × ∂x

∂v .

Definition. If n ̸= 0 at all points, the surface is regular.

Examples

(1) F (x) = x2 + y2 + x2 − R2 = 0 is a sphere of radius R. The normal vector is ∥ to
∇F and is

2

xy
z


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(2) A hyperboloid is defined by

F (x) = x2 + y2 − z2 −R2 = 0

∇F = 2

 x
y
−z



Note. When R = 0 the surface is no longer regular:

A surface S can have a boundary. The boundary is a closed curve C, denoted as C = ∂S.

Deep Fact: The boundary curve C is closed, i.e. it has no end points.
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Another Deep Fact: We denote the boundary of something by ∂. The fact that the
boundary of a boundary vanishes is written

∂C = ∂2S = 0

Definition. A surface is bounded / unbounded if it doesn’t / does stretch to infinity.
A bounded surface with no boundary is closed.

Note. There is no canonical way to fix the ± sign of n. If there is a consistent choice
over the surface S, then S is orientable. For example the sphere S2 is orientable
but the Möbius M with ∂M = S1 (circle) is non-orientable. We will only work with
orientable surfaces.

Integrating Scalar Fields

Consider a parametrised surface
x(u, v)

sit at some point (u, v) and move a small amount δu or δv.

The parallelogram defined by ∂x
∂u and ∂x

∂v has scalar area

δS =

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ δuδv
The integral of a scalar field ϕ(x) over a parametrised surface is∫

S
ϕ(x)dS =

∫
D
dudv

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ϕ(x(u, v))

30



Note. This does not depend on the orientation of S. Also
∫
S dS is the area of the

surface. Also, the integral does not depend on the choice of parametrisation.

Start of
lecture 9

To see that this integral is parametrisation invariant, suppose that x(ũ, ṽ) describes the
same surface. Then

∂x

∂u
=
∂x

∂ũ

∂ũ

∂u
+
∂x

∂ṽ

∂ṽ

∂u

∂x

∂v
=
∂x

∂ũ

∂ũ

∂v
+
∂x

∂ṽ

∂ṽ

∂v

=⇒ ∂x

∂u
× ∂x

∂v
=
∂(ũ, ṽ)

∂(u, v)

∂x

∂ũ
× ∂x

∂ṽ

But from earlier,

dũdṽ =
∂(ũ, ṽ)

∂(u, v)
dudv

=⇒ dS =

∣∣∣∣∂x∂ũ × ∂x

∂ṽ

∣∣∣∣dũdṽ
and the integral takes the same form for (u, v) and (ũ, ṽ).

An Example

Let s be the surface of a sphere of radius R subtended by angle α.

In spherical polars,

x(θ, ϕ) = R(sin θ cosϕ, sin θ sinϕ, cos θ)

:= Rer
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(with ϕ ∈ [0, 2π) and θ ∈ [0, α]). We also write er = r̂. We have

∂x

∂θ
= R(cos θ cosϕ, cos θ sinϕ,− sin θ)

:= Reθ

∂x

∂ϕ
= R(− sin θ sinϕ, sin θ cosϕ, 0)

:= R sin θeϕ

=⇒ ∂x

∂θ
× ∂x

∂ϕ
= R2 sin θer

=⇒ dS = R2 sin θdθdϕ

The area is now

A =

∫ 2π

0
dϕ

∫ α

0
dθR2 sin θ

= 2πR2(1− cosα)

Integrating Vector Fields

It is often useful to integrate a vector field over a surface to yield a number. We do this
by ∫

S
F(x) · ndS =

∫
D
dudv

(
∂x

∂u
× ∂x

∂v

)
· F(x(u, v))

(n is unit normal to the surface). This is the flux of F through S. Again, it is
reparametrisation invariant.

We define the vector area element

dS = ndS =
∂x

∂u
× ∂x

∂v
dudv

Clearly |dS| = dS. Then the flux can be written as∫
S
F · dS

The flux depends on the orientation of S, i.e. on the sign of n.

An Application: Consider a fluid with a velocity field F(x).
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In a small δt, the amount of fluid that flows through S is

Fluid flow = Fδt · nδS

Flow =

∫
F · dS = fluid crossing S per unit time
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Example. Let F = (−x, 0, z).

We’ll integrate this over the spherical cap r = R, 0 ≤ θ ≤ α and 0 ≤ ϕ < 2π. We
know that

dS = R2 sin θdθdϕer

er ≡ r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

F · er = −x sin θ cosϕ+ z cos θ

= R(− sin2 θ cos2 ϕ+ cos2 θ)

using x, z polar coordinates.∫
F · dS =

∫ α

0
dθ

∫ 2π

0
dϕR3 sin θ(− sin2 cos2 ϕ+ cos2 θ)

= πR3 cosα sin2 α

The Gauss-Bonnet Theorem (non-examinable)

Consider a surface S with a normal n at some point.
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Draw a plane containing n. The intersection of the plane and S gives a curve C, with
curvature κ at the point.

Now we rotate the plane about n =⇒ the curve and κ change. The Gaussian curvature
of S at the point is

K = κminκmax

Theorem (Gauss-Bonnet v1). For a closed surface S,∫
S
κdS = 4π(1− g)

where g = genus = number of holes. For example, for a sphere g = 0, for a torus
g = 1 and a double torus has g = 2.

Start of
lecture 10
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Theorem (Gauss-Bonnet v2). Draw a geodesic triangle on a surface S.

The sides are geodesics, meaning curves with shortest arc length between two points.

θ1 + θ2 + θ3 = ϕ+

∫
△
κdS.
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3 Grad, Div and Curl

We will consider different ways to differentiate.

3.1 The Gradient

Consider a scalar field ϕ : Rn → R. Then we define the gradient by

ϕ(x+ h) = ϕ(x) + h · ∇ϕ+ θ(|h|2)

In cartesian coordinates x = (x1, . . . , xn) with {ei} the associated orthonormal basis of
Rn, we take

h = εei

with ε≪ 1 and this reduces to our earlier definition

∇ϕ =
∂ϕ

∂xi
ei

This is what we use practice.

Example. Let ϕ : R3 → R with

ϕ(x) = −1

r

with r =
√
x2 + y2 + z2. Then

∂ϕ

∂x
=

x

(x2 + y2 + z2)3/2
=

x

r3

and similarly for ∂ϕ
∂y and ∂ϕ

∂z

=⇒ ∇ϕ =
xx̂+ yŷ + zẑ

r3
=

r̂

r2

where r̂ is the unit vector pointing radially (also called er).

Application

Let x(t) : R → Rn define a curve in Rn and ϕ : Rn → R be a scalar field. Then

ϕ(x(t)) : R → R

is the value of ϕ along the curve. We can differentiate ϕ along the curve using the chain
rule

dϕ

dt
=

∂ϕ

∂xi
dxi

dt
= ∇ϕ · dx

dt
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3.2 Div and Curl

We define the gradient operator

∇ = ei
∂

∂xi

This is both a vector and a differential operator. These operators are waiting for some
function to come along to be differentiated. ∇ is also called nabla or del.

Originally we introduced ∇ as acting on a scalar ϕ : R → R. But we can also ask how
it might act on other fields.

Consider a vector field F : Rn → Rn. The divergence of F is a scalar field, defined by

∇ · F =

(
ei

∂

∂xi

)
· (ejFj)

= (ei · ej)
∂Fj

∂xi

=
∂Fi

∂xi

but ei · ej = δij . For example in R3

∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

with F = (F1, F2, F3).

We’ll later see that ∇ · F measures the net flow of F into / out of a point x.

For vector fields F : R3 → R3, we can also define the curl

∇× F =

(
ei

∂

∂xi

)
× (ejFj)

= εijk
∂Fj

∂xi
ek

Equivalently

∇× F =

∂2F3 − ∂3F2

∂3F1 − ∂1F3

∂1F2 − ∂2F1


where ∂i ≡ ∂

∂xi . Alternatively

∇× F =

∣∣∣∣∣∣
e1 e2 e3
∂1 ∂2 ∂3
F1 F2 F3

∣∣∣∣∣∣
We’ll later see that ∇× F measures the rotation of F.
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Examples in R3

(1) Consider F = (x2, 0, 0)

=⇒ ∇ · F = 2x =⇒ more out than in at any point

∇× F = 0 =⇒ no rotation

(2) Consider F = (y,−x, 0)

∇ · F = 0 =⇒ no build up at any point

∇× F = (0, 0,−z) =⇒ rotation in x− y plane

(3) F = r̂
r2
. You can check that ∇ · F = 0 and ∇×F = 0. Except there’s a subtlety at

r = 0 where F is singular. It turns out that

∇× F = 0

∇ · F = 4πδ3(x)
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Where
δ3(x) = δ(x)δ(y)δ(z)

(δ is the Dirac delta function).
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lecture 11 Note. Here are some useful tips when evaluating derivatives of radial fields. We

use

r2 = xixi =⇒ 2r
∂r

∂xi
= 2xi

=⇒ ∂r

∂xi
=
xi

r

Then we have

∇rp = ei
∂rp

∂xi

= prp−1xi
r
ei

= prp−1r̂

The vector x = xiei can also be written as r = rr̂ to highlight that it points
outwards. We have

∇ · r =
∂xi

∂xi
= δii = n

(in Rn).
Also in R3,

∇× r = εijk
∂xj

∂xi
ek = 0

Some Basic Properties

For constant α, scalar fields ϕ and ψ, and vector fields F and G, we have

∇(αϕ+ ψ) = α∇ϕ+∇ψ
∇ · (αF+Gbg) = α∇ · F+∇ ·G
∇× (αF+G) = α∇× F+∇×G

This is the statement that ∇ is a linear operator.

∇ obeys a generalised product rule (known as Leibniz property):

∇(ϕψ) = ϕ∇ψ + ψ∇ϕ
∇ · (ϕF) = (∇ϕ) · F+ ϕ(∇ · F)

∇× (ϕF) = (∇ϕ)× F+ ϕ(∇× F)
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The proofs of these follow from the definitions. For example

∇ · (ϕF) = ∂

∂xi
(ϕFi)

=
∂ϕ

∂xi
Fi + ϕ

∂Fi

∂xi

= ∇ϕ · F+ ϕ∇ · F

There are some further properties

∇ · (F×G) = (∇× F) ·G− F · (∇×G)

∇(F ·G) = F× (∇×G) +G× (∇× F) + (F · ∇)G+ (G · ∇)F

∇× (F×G) = (∇ ·G)F− (∇ · F)G+ (G · ∇)F− (F · ∇)G

All of these are proven using index notation. IN the last two identities, we have intro-
duced the notation

F · ∇ = Fi
∂

∂xi

Definitions

� A vector field F is conservative if it can be written

F = ∇ϕ

for some scalar ϕ.

� A vector field is called irrotational if

∇× F = 0

� A vector field is divergence free or solenoidal if

∇ · F = 0

Theorem (A baby version of the Poincaré lemma). For fields defined everywhere
on R3, conservative ⇐⇒ irrotational, i.e.

∇× F = 0 ⇐⇒ F = ∇ϕ

(sketch). If Fi =
∂ϕ
∂xi then

(∇× F)k = εijk
∂2ϕ

∂xi∂xj
= 0

by symmetry. We will show ∇×F = 0 =⇒ F = ∇ϕ when we prove Stokes’ theorem in
section 4.
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Theorem. For F defined everywhere on R3,

∇ · F = 0 ⇐⇒ F = ∇×A

for some vector field A.

(sketch). If Fi = εijk∂jAk

=⇒ ∇ · F = ∂i(εijk∂jAk) = 0

by symmetry. The other way is an optional question on Example Sheet 2.

Definition. The Laplacian is a second order differential operator

∇2 = ∇ · ∇ =
∂∂2

∂∂xi∂xi

for example in R3, we have

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

Acting on a scalar field ϕ, ∇2 gives back another scalar field ∇2ϕ.
It acts component-wise on a vector field F to give another vector field ∇2F.

Claim. ∇2F = ∇(∇ · F)−∇× (∇× F)

Proof. Use triple product formula for ∇× (∇× F).

The Laplacian occurs in many places in maths and physics. For example, the heat
equation

∂T

∂t
= D∇2T

and tells us how temperature T (x, t) evolve in time. (D is called the diffusion constant).

The linear operator ∇ also appears in many laws of physics. For example, the electric
field E(x, t) and magnetic field B(x, t) are governed by the Maxwell equations

∇ ·E =
ρ

ε0
∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0

(
J+ ε0

∂E

∂t

)
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where ρ(x, t) is the electric charge density andJ(x, t) is the electric current density, and
µ0 and ε0 are constants of nature.

Start of
lecture 12 3.3 Orthogonal Curvilinear Coordinates

We want to find expressions for ∇ in different coordinates systems.

Introduce coordinates u, v, w so
x = x(u, v, w)

A change of (u, v, w) changes the point x to x+ dx

dx =
∂x

∂u
du+

∂x

∂v
dv +

∂x

∂w
dw

(where ∂x
∂udu is the tangent vector to v, w = constant) These are good coordinates at a

point provided
∂x

∂u
·
(
∂x

∂v
× ∂x

∂w

)
̸= 0

If the three tangent vectors are mutually orthogonal then (u, v, w) are said to be orthog-
onal curvilinear.

For such coordinates, we introduce normalised tangent vectors, i.e.

∂x

∂u
= hueu

∂x

∂v
= hvev

∂x

∂w
= hwew

with hu, hv, hw > 0 and eu, ev, ew are a right-handed orthonormal basis

eu × ev = ew

so
dx = hueudu+ hvevdv + hwewdw

=⇒ dx2 = h2udu
2 + h2vdv

2 + h2wdw
2

(scale factors tell us the change in length)

Examples

(1) Cartesian coordinates x = (x, y, z) with hy = hv = hw = 1 and

ex = x̂, ey = ŷ, ez = ẑ
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(2) Cylindrical polar coordinates have

x = (ρ cosϕ, ρ sinϕ, z)

(ρ ≥ 0, ϕ ∈ [0, 2π)) or ρ =
√
x2 + y2 and tanϕ = y

x .

eρ = ρ̂ = (cosϕ, sinϕ, 0)

eϕ = ϕ̂ = (− sinϕ, cosϕ, 0)

ez = ẑ = (0, 0, 1)

and hρ = hz = 1 and hϕ = ρ.

(3) Spherical polar coordinates have

x = (r sin θ cosϕ, r sin θ sinϕ, r cos θ)

with r ≥ 0, θ ∈ [0, π], θ ∈ [0, 2π).

=⇒ r =
√
x2 + y2 + z2, tan θ =

√
x2 + y2

z
, tanϕ =

y

x

We have

er = r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)

eθ = θ̂ = (cos θ cosϕ, cos θ sinϕ,− sin θ)

eϕ = ϕ̂ = (− sinϕ, cosϕ, 0)

with hr = 1, hθ = r, hϕ = r sin θ.
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Grad

If we shift x → x+ dx then a scalar field f(x) changes as

df = ∇f · dx

In a general coordinate system

df =
∂f

∂u
du+

∂f

∂v
dv +

∂f

∂w
dw

= ∇f · (hueudu+ hvevdv + hwewdw)

=⇒ ∇f =
1

hu

∂f

∂u
eu +

1

hv

∂f

∂v
ev +

∂1

∂hw

∂f

∂w
ew

using eu · ev = 0, etc.
For example in cylindrical polar

∇f =
∂f

∂ρ
ρ̂+

1

ρ

∂f

∂ϕ
ϕ̂+

∂f

∂z
ẑ

In spherical polar

∇f =
∂f

∂r
r̂+

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂ϕ
ϕ̂

Div and Curl

In general coordinates we have

∇ =
1

hu
eu

∂

∂u
+

1

hv
ev

∂

∂v
+

1

hw
ew

∂

∂w
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This now acts on vector fields

F = Fueu + Fvev + Fwew

But now {eu, ev, ew} depend on (u, v, w) and are hit by derivatives =⇒ a little messy.

Claim.

∇ · F =
1

huhvhw

(
∂

∂u
(hvhwFu) +

∂

∂v
(huhwFv) +

∂

∂w
(huhvFw)

)

∇× F =

∣∣∣∣∣∣
hueu hvev hwew

∂
∂u

∂
∂v

∂
∂w

huFu hvFv hwFw

∣∣∣∣∣∣× 1

huhvhw

Proof. Nope!

For cylindrical polar

∇ · F =
1

ρ

∂(ρFρ)

∂ρ
+

1

ρ

∂Fϕ

∂ϕ
+
∂Fz

∂z

∇× F =

(
1

ρ

∂Fz

∂ϕ
−
∂Fϕ

∂z

)
ρ̂+

(
∂Fρ

∂z
− ∂Fz

∂ρ

)
ϕ̂+

1

ρ

(
∂(pFϕ)

∂ρ
− ∂Fρ

∂ϕ

)
ẑ

∇2f = ∇ · ∇f

=
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2
∂2f

∂ϕ2
+
∂2f

∂z2

For spherical polar

∇ · F =
1

r2
∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fϕ

∂ϕ

∇×F =
1

r sin θ

(
∂(sin θFϕ)

∂θ
− ∂Fθ

∂ϕ

)
r̂+

1

r

(
1

sin θ

∂Fr

∂ϕ
−
∂(rFϕ)

∂r

)
θ̂+

1

r

(
∂(rFθ)

∂r
− ∂Fr

∂θ

)
θ̂

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2

Start of
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4 Integral Theorems

4.1 The Divergence Theorem

(Also known as Gauss’ theorem).

Theorem (Gauss’ Theorem). Given a smooth vector field F(x) over R3∫
V
∇ · FdV =

∫
S
F · dS

with S = ∂V and dS = dSn is pointing outwards.

Note. The divergence theorem gives intuition for the meaning of ∇ · F.

In a suitably small volume, over which ∇ · F ≈ constant,∫
V
∇ · FdV = V∇ · F(x)

=⇒ ∇ · F = lim
V→0

1

V

∫
∂V

F · dS

=⇒ divergence = net flow into/out of region V

∇ · F > 0 =⇒ net flow out

∇ · F < 0 =⇒ net flow int
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For example, MAxwell’s equations tell us

∇ ·B = 0 =⇒ magnetic field lines are continuous

∇·E =
ρ

ε0
=⇒ electric field lines are continuous when electric charge density ρ(x) = 0

But when ρ(x) ̸= 0, the electric field can begin and end.
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Example. Let V = solid hemisphere.

x2 + y2 + z2 ≤ R2

and z ≥ 0.
∂V = S1 + S2

We’ll integrate F = (0, 0, z +R)

=⇒ ∇ · F = 1

=⇒
∫
V
∇ · FdV =

∫
V
dV =

2

3
πR3

On S1:

n =
1

R
(x, y, z)

=⇒ F · n =
z(z +R)

R
= R cos θ(cos θ + 1)

(where z = R cos θ)

=⇒
∫
S1

F · dS =

∫ 2π

0
dϕ

∫ π/2

0
dθ(R2 sin θ)×R cos θ(cos θ + 1) =

5

3
πR3

On S2,
n = (0, 0,−1)

=⇒ F · n = −R

on S2

=⇒
∫
S2

F · dS = (−R)× πR2 = −πR3

=⇒
∫
S1+S2

F · dS =
2

3
πR3
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of Divergence Theorem. First, a simple proof. Divide V into cubes

Flow of F through the (y, z) plane is roughly

[Fx(x+ δx, y, z)− Fx(x, y, z)]δyδz ≈
∂Fx

∂x
δxδyδz

Do the same for the other sides

=⇒
∫
S
F · dS =

∫
V
∇ · FdV

A concern: can we approximate the boundary with cubes? For example in 2d:

(better proof). First note that∫
V
∇ · FdV =

∫
∂
V F · dS

holds in and Rn. We start by proving the following:
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Lemma. 2d divergence theorem:∫
D
∇ · FdA =

∫
C
F · ndS

with C = ∂D.

of lemma. ∫
D
∇ · FdA =

∫
X
dx

∫ y+(x)

y−(x)
dy
∂F

∂y

For now assume D is convex so that the
∫
dy is over a single interval, rather than
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Then ∫
D
∇ · FdA =

∫
X
dx(F (x, y+(x))− F (x, y−(x)))

Next we change
∫
dx to

∫
dds, where s = arc length. Zoom in to the top curve C+
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The normal makes an angle
cos θ = ŷ · n

and
δx = cos θδs = ŷ · nδs

along C+. Similarly, along C−,
δx = ŷ · nδs∫

D
∇ · FdA =

∫
X
ds (n · F(x, y+(x)) + n · F(x, y−(x))))

=

∫
C+

F · nds+
∫
C−

F · nds

=

∫
C
F · nds

with C = C+ + C−. Finally if D is not convex, then just decompose C into more
pieces.

Back to 3D theorem.
We use the same strategy. Take F = F (x)ẑ. Then∫

V
∇ · FdV =

∫
D
dA

∫ z+(x,y)

z−(x,y)
dz
∂F

∂z
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∫
V
∇ · FdV =

∫
D
dA[F (x, y, z+(c, y))− F (x, y, z−(x, y))]

with limits z± the upper / lower surface of V .
Now convert

∫
dA into the surface integral over S = ∂V . This again includes an angle

cos θ = ±n · ẑ with n normal to S. This gives the result.

Start of
lecture 14 Corollary. For a scalar field ϕ∫

V
∇ϕdV =

∫
∂V
ϕds

Proof. Use divergence theorem with

F = ϕa

with a a constant. ∫
V
∇ · (ϕa)dV =

∫
∂V
ϕa · ds

=⇒ a ·
[∫

V
∇ϕdV −

∫
∂V
ϕds

]
= 0

But true ∀ a implies the result.

4.2 An Application: Conservation Laws

Many things are conserved, for example energy, momentum, angular momentum, electric
charge. Importantly, all of these are conserved locally. This means that stuff moves
continuously to nearby points.
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Let ρ(x, t) be the density of the conserved object, for example electric charge. Then

Q =

∫
V
ρdV

is the charge in a region V . Conservation of Q means that there exists a vector J(x, t),
known as a current density such that

∂ρ

∂t
+∇ · J = 0

This is the continuity equation.

The change of Q in some fixed region V is

dQ

dt
=

∫
V

∂ρ

∂t
dV

= −
∫
V
∇ · JdV

= −
∫
S
J · ds

(J is current flowing in/out of V ). If J(x) = 0 on S then Q̇ = 0. Often consider V = R3

and Q̇ = 0 provided that J(x) → 0 suitably quickly as |x| → ∞.

Example. A fluid has mass density ρ(x, t) and mass current J = ρu with u(x, t)
the velocity field.
Mass is conserved

=⇒ ∂ρ

∂t
+∇ · J = 0

But many fluids are incompressible with ρ = constant. Then continuity equation
gives

∇ · u = 0
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Example (Diffusion). Consider a gas with energy density ε(x, t). Energy is con-
served

=⇒ ∂ε

∂t
+∇ · J = 0

(J is heat current)
Fact 1:

ε(x, t) = cvT (x, t)

where cv is heat capacity and T is temperature.
Fact 2: (Fick’s law) Heat current is due to temperature differences

J = −κ∇T

(κ is thermal conductivity)

=⇒ ∂T

∂t
= D∇2T

i.e. the heat equation with D = κ
cv
.

Start of
lecture 15 4.3 Green’s Theorem in the Plane

Theorem (Green’s Theorem). Let P (x, y) and Q(x, y) be smooth functions on R2.
Then ∫

A

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
C
Pdx+Qdy

with C = ∂A traversed anti-clockwise.

Proof. Let F = (Q,−P ) so∫
A
∇ · FdA =

∫
A

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
C
F · nds

by 2D divergence theorem.
Parametrise C by

x(s) = (x(s), y(s))

so the tangent vector is
t = (x′(s), y′(s))

and the normal is
n = (y′(s),−x′(s))

so that n · t = 0.
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If s increases in an anti-clockwise direction, then n is outward pointing normal.

F · n = Q
dy

ds
+ P

dx

ds

=⇒
∮
C
F · nds =

∮
C
Pdx+Qdy

Note. We can also use this theorem when C = ∂A has disconnected components.

The two line integrals across the gap cancel.
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Example. P = x2y and Q = xy2. Integrate over

Claim. ∫
A
(y2 − x2)dA =

∮
C
x2ydx+ xy2dy

Proof. This is Example Sheet 1, Question 9 (both sides are equal to 104
105a

4).

4.4 Stokes Theorem

Theorem (Stokes Theorem). Let S be a smooth surface in R3 with boundary
C = ∂S. Then for a smooth vector field F(x)∫

S
∇× F · ds =

∮
C
F · dx

To fix the orientation, if n is a normal to S and t is tangent to C then t × n should
point out of S.
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If n points towards you, then orientation of C is anti-clockwise.
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Note. Stokes theorem gives a meaning to curl. For suitably small S, ∇ × F ≈
constant and ∫

S
∇× F · ds ≈ An · (∇× F)

where A is the area of S and n is the normal to S.

=⇒ n · (∇× F) = lim
A→0

1

A

∫
C
F · dx

i.e. curl in direction n is circulation in plane normal to n. This also gives some
intuition for Stokes’ theorem:

At each point in S, ∇ × F is circulation. But this cancels in the interior, leaving
only the boundary contribution.

Corollary. Irrotational =⇒ conservative:

∇ · F = 0 =⇒
∮
C
F · dx = 0 ∀ closed C

=⇒ F = ∇ϕ

from Section 1.
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Example. S is a hemispherical cap of radius R with 0 ≤ θ ≤ α.

F = (0, xz, 0)

=⇒ ∇× F = (−x, 0, z)

and ∫
S
∇× F · ds = πR3 cosα sin2 α

from Section 2.
For the line integral, let

x(ϕ) = R(sinα cosϕ, sinα sinϕ, cosα)

where ϕ ∈ [0, 2π).

=⇒ dx = R(− sinα sinϕ, sinα cosϕ, 0)dϕ

and ∮
C
F · dx =

∫ 2π

0
dϕRxz sinα cosϕ

=

∫ 2π

0
dϕR3 sin2 α cosα cos2 ϕ

= πR3 sin2 α cosα
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Example. Cone z2 = x2 + y2 and a ≤ z ≤ b, a, b > 0.

surface is
x(ρ, ϕ) = (ρ cosϕ, ρ sinϕ, ρ)

where 0 ≤ ϕ < 2π and a ≤ ρ ≤ b. Tangent vectors:

∂x

∂ρ
= (cosϕ, sinϕ, 1)

∂x

∂ϕ
= ρ(− sinϕ, cosϕ, 0)

=⇒ n =
∂x

∂ρ
× ∂x

∂ϕ
= (−ρ cosϕ,−ρ sinϕ, ρ)

(points inwards).
=⇒ ds = ρ(− cosϕ,− sinϕ, 1)dρdϕ

Again integrate F = (0, xz, 0)

=⇒ ∇× F · ds = (x cosϕ+ z)ρdρdϕ

= ρ2(1 + cos2 ϕ)dρdϕ

=⇒
∫
S
∇× F · ds =

∫ b

a
dρ

∫ 2π

0
dϕρ2(1 + cos2 ϕ)

= π(b3 − a3)

Compare to line integral over ∂S = Cb − Ca.
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lecture 16 of Stokes’ Theorem. First show that Stokes =⇒ Green. Consider

F = (P (x, y), Q(x, y), 0)

Take a flat surface S in z = 0 plane. Then∫
S
∇× F · ds =

∫
S

(
∂Q

∂x
− ∂P

∂y

)
ds

and ∫
C
F · dx =

∫
C
Pdx+Qdy

This is Green’s theorem in the plane.

Now we show that Green =⇒ Stokes. Let x(u, v) be the parametrised surface S and
x(u(t), v(t)) be the parametrise boundary C = ∂S.

Let A be the associated area in (u, v) plane and ∂A the boundary. Now∮
C
F · dx =

∫
C
F ·

(
∂x

∂u
du+

∂x

∂v
dv

)
=

∫
∂A
Fudu+ Fvdv

with Fu = F · ∂x
∂u and Fv = F · ∂x

∂v .

=⇒
∮
C
F · dx =

∫
A

(
∂Fv

∂u
− ∂Fu

∂v

)
dA

63

https://notes.ggim.me/VC#lecturelink.16


by Green’s Theorem. Now

∂Fv

∂u
=

∂

∂u

(
F · ∂x

∂v

)
=

∂

∂u

(
Fi
∂xi

∂v

)
=
∂Fi

∂xj
∂xj

∂u

∂xi

∂v
+ Fi

∂2xi

∂u∂v

and
∂Fu

∂v
=
∂Fi

∂xj
∂xj

∂v

∂xi

∂u
+ Fi

∂2xi

∂u∂v

=⇒ ∂Fv

∂u
− ∂Fu

∂v
=
∂xj

∂u

∂xi

∂v

(
∂Fi

∂xj
− ∂Fj

∂xi

)
= (δjkδil − δjlδik)

∂xk

∂u

∂xl

∂v

∂Fi

∂xj

= εjipεpkl
∂xk

∂u

∂xl

∂v

∂Fi

∂xj

= (∇× F) ·
(
∂x

∂u
× ∂x

∂v

)
=⇒

∮
C
F · dx =

∫
A
(∇× F) ·

(
∂x

∂u
× ∂x

∂v

)
dudv

=

∫
S
(∇× F) · ds

An Application: Magnetic Fields

One of the Maxwell equations reads

∇×B = µ0J

where B is magnetic field and J is current density. This is known as Ampère’s law.
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∫
S
∇×B · ds =

∫
C
B · dx

=

∫
S
µ0J · ds

= µ0I

where I is total current. Parametrise x = ρ(cosϕ, sinϕ, 0) (ρ is radius of S, ϕ ∈ [0, 2π)).

t =
∂x

∂ϕ
= ρ(− sinϕ, cosϕ, 0)

Ansatz: B parallel to t everywhere, i.e. B = b(ρ)(− sinϕ, cosϕ, 0)

=⇒ B · t = ρb(ρ)

and Maxwell tells us that∮
C
B · dx

∫ 2π

0
dϕρb(ρ) = 2piρb(ρ) = µ0I

=⇒ b(ρ) =
µ0I

2πρ

=⇒ B(x) =
µ0I

2πρ
(− sinϕ, cosϕ, 0)

This is the magnetic field outside a current carrying wire.
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5 Vector Calculus Equations

5.1 Gravity and Electrostatics

Two particles with mass m, M and charge q, Q, separated by a distance r, experience

� Newton’s force: F(r) = −GMm
r2

r̂

� Coulomb force: F(r) = Qq
4πε0r2

r̂

It’s useful to think of one particle with mass m, charge q, moving in the background of
the other.

Physically sensible if m≪M , q ≪ Q, write the force as

F(x) = mg(x) and F(x) = qE(x)

where g and E are gravitational field and electric field respectively.

g(x) = −GM
r2

r̂

E(x) =
Q

4πε0r2
r̂

These fields obey following equations:∫
S
g · ds = −4πGM

(M is the mass inside S) ∫
S
E · ds =

Q

ε0

(Q is the charge inside S).
Start of
lecture 17 Gauss’ Law

Integrate these vector fields over a sphere S of radius r∫
S
g · ds = −4πGM

and ∫
S
E · ds =

Q

ε0
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Note. The result is independent of r! The flux of the field tells us the total mass /
charge inside the sphere.

This is Gauss’ law (in integrated form).

In fact, Gauss’ law is equivalent to the force laws. Consider a sphere of radius R and
mass M , with some spherically symmetric mass distribution.

symmetry =⇒ g(x) = g(f)r̂

Consider a surface S which is a sphere of radius r > R.∫
S
g(x) · ds =

∫
S
g(r)ds

= 4πr2g(r)

= −4πGM by Gauss

=⇒ g(r) = −GM
r2

r̂

which is Newton’s law.

Note. Don’t need a point mass M . It holds for any spherically symmetric mass
density.

This is known as the Gauss flux method.
We can also use Gauss’ law in other situations. Consider an infinite wire with charge
per unit length σ.
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By symmetry E(r) = E(r)r̂ (r cylindrical polar r2 = x2 + y2)∫
S
E · ds = 2πrLE(r) =

Q

ε0
=
σL

ε0

Note. E · n = 0 on end caps so no contribution.

=⇒ E(r) =
σ

2πε0r
r̂

is electric field due to wire.

Note. Now 1
r instead of 1

r2
as field spreads out in R2 instead of R3.

In Rn, the electric / gravitational field would be F ∼ r̂
rn−1 .

There’s a different way to write Gauss’ law. If the mass density is ρ(x) then from Gauss’
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theorem ∫
V
∇ · gdV =

∫
S
g · ds by divergence theorem

= −4πGM by Gauss’ law

= −4πG

∫
V
ρ(x)dV

=⇒
∫
V
(∇ · g + 4πGρ(x))dV = 0

But this is true for all volumes V

=⇒ ∇ · g = −4πGρ(x).

This is Gauss’ law in differential form. It is the more sophisticated version of Newton’s
force law. Similarly

∇ ·E =
ρe(x)

ε0

(ρe is electric charge density). This is the grown-up version of Coulomb’s law.

Potentials

It is a fact that the fields g and E are conservative, i.e.

g = −∇Φ and Ebf = −∇ϕ

for potentials Φ and ϕ. We’ve seen some consequences of this. We have

∇× g = ∇×E = 0

and ∮
C
g · dx =

∮
C
E · dx = 0

and most importantly, it means that there is a conserved energy

Energy =
1

2
mẋ2 +mΦ(x) + qϕ(x)

Gauss’ law then becomes
∇2Φ = 4πGρ(x)

and

∇2ϕ = −ρe(x)
ε0

This is the Poisson equation. The goal is to solve for Φ(x) for some fixed “source” ρ(x).
If ρ = 0, then we solve

∇2Φ = 0.

This is the Laplace equation.
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5.2 The Laplace and Poisson Equations

We write
∇2ψ(x) = −ρ(x)

Solve for ψ(x) given a source ρ(x) and suitable boundary conditions.

Note. ∇2ψ = 0 is linear, so if ψ1 and ψ2 are solutions, then so is ψ1 + ψ2.

Solutions to the Laplace equation act as complementary solutions to Poisson.

Isotropic Solutions

∇2ψ = 0 is a PDE. But with suitable symmetry, it becomes an ODE. For example,
spherical symmetry =⇒ ψ = ψ(r) (r2 = x2 + y2 + z2).

∇2ψ =
d2ψ

dr2
+

2

r

=
1

r2
d

dr

(
r2

dψ

dr

)
= 0

=⇒ ψ =
A

r
+B

(A, B constants).
Start of
lecture 18

We can also look in cylindrical polar coordinates and seek solutions of the form

ψ = ψ(r)

(r2 = x2 + y2). Now we have

∇2ψ =
d2ψ

dr2
+

1

r

dψ

dr
=

1

r

d

dr

(
r
dψ

dr

)
= 0

=⇒ ψ = A log r +B

Note. In Rn, with n ≥ 3, ∇2ψ = 0 has the symmetric solution

ψ =
A

rn−2
+B

We can get more solutions by differentiating, for example if ψ = 1
r is a solution in R3,

then so too

ψ̃(x) = d · ∇
(
1

r

)
= −d · x

r3

with d a constant vector. (This is a potential for a dipole in electromagnetism).
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Boundary Conditions

Often boundary conditions are important. For example: Solve

∇2ψ =

{
−ρ0 r ≤ R

0 r > R

with ρ0 constant. (for example gravitational potential for a planet with constant density).
To get a unique solution, we require

� ψ(r = 0) non-singular

� ψ(r) → 0) as r → ∞

� ψ and ψ′ continuous.

Can check that if ψ(r) = rp then

∇2 = p(p+ 1)rp−2

(in R3). With spherical symmetry, we have

ψ(r) =
A

r
+B − 1

6
ρ0r

2 r ≤ R

ψ(r = 0) non-singular =⇒ A = 0. For r > R,

ψ(r) =
c

r
+D r > R

ψ(r → ∞) → 0 =⇒ D = 0. Then we patch these together at r = R:

ψ(r = R) = B − 1

6
ρ0R

2 =
C

R

ψ′(r = R) = −1

3
ρ0R = − c

R2

=⇒ ψ(r) =

{
1
6ρ0(3R

2 − r2) r ≤ R
1
3ρ0

R3

r r > R
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General Results

If we solve ∇2ψ = −ρ in some region V ⊂ R3, then there are two common boundary
conditions on ∂V .

� Dirichlet (D): Fix ψ(x) = f(x) on ∂V .

� Neumann (N): Fix n · ∇ψ(x) = g(x) on ∂V , with n the outward pointing normal.

Notation. Sometimes this is written as

dψ

dn
≡ n · ∇ψ

or even
dψ

dn
≡ n · ∇ψ

Claim. There is a unique solution to the Poisson equation on V with either D or
N boundary conditions specified on each ∂V .

Note. Unique up to constant for N.

Proof. Let ψ1 and ψ2 satisfy Poisson and

ψ = ψ1 − ψ2

Then ∇2ϕ = 0 with ψ = 0 or n · ∇ψ = 0 on each ∂V .∫
v
∇ · (ψ∇ψ)dV =

∫
V
(∇ψ · ∇ψ + ψ∇2ψ)dV

=

∫
V
|∇ψ|2dV

=

∫
∂V
ψ∇ψ · ds by Divergence Theorem

=

∫
∂V
ψ(n · ∇ψ)ds

= 0 by one of the boundary conditions

=⇒ |∇ψ|2 = 0 in V

=⇒ ∇ψ = 0 in V

=⇒ ψis constant

If Dirichlet =⇒ ψ = 0 on ∂V =⇒ ψ = 0 everywhere.
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Note. Strictly for bounded V , but we can work harder and extend to, for example
R3.

Note. � If we can find, for example an isotropic solution, then this is the solu-
tion.

� Sometimes there may be no solution.

Example. Solve ∇2ψ = ρ(x) with n · ∇ψ = g(x) on ∂V . Then∫
V
∇2ψdV =

∫
∂V

∇ψ · ds

so a solution can exist only if∫
V
ρdv =

∫
∂V
g(x)ds

� The proof uses Green’s first identity:∫
V
ψ∇2ψdV = −

∫
∇ϕ · ∇ψdV +

∫
S
ϕ∇ψ · ds

(with ϕ = ψ) This follows from the divergence theorem. Or by anti-symmetry∫
V
(ϕ∇2ψ − ψ∇2ϕ)dV =

∫
S
(ϕ∇ψ − ψ∇ϕ) · ds

This is Green’s second identity.

Start of
lecture 19 Harmonic Functions

Solutions to the Laplace equation
∇2ψ = 0

are called harmonic functions.
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Claim (The mean value property). If ψ is harmonic in a region V that includes the
ball with boundary

Sr : |x− a| = R

then

ψ(a) = ψ(R) :=
1

4πR2

∫
SRψ(x)dS

i.e. the value in the middle of the sphere is equal to the average over the boundary
of the ball.

Proof. In spherical polar coordinates

dS = r2 sin θdθdϕ

ψ(r) =
1

4π

∫
dϕ

∫
dθ sin θψ(x, θ, ϕ)

dψ

dr
(R) =

1

4π

∫
dϕ

∫
dθ sin θ

∂ψ

∂r
(R, θ, ϕ)

=
1

4πR2

∫
SR

∂ψ

∂r
dS =⇒ dψ

dr
(R) =

1

4πR2

∫
SR

∇ψ · dS

=
1

4πR2

∫
Ball

∇2ψdV

= 0

by the divergence theorem. But ψ(R) → ψ(a) as R→ 0 hence ψ(R) = ψa for all R.

Claim. A harmonic function can have neither a maximum nor a minimum in the
interior of V . The max / min lie on ∂V .

Proof. If ∃ a local maximum at a then ∃ ε such that ψ(x) < ψ(a) for all |x − a| < ε.
But this contradicts that ψ(R) = ψ(a) for 0 < R < ε.

Note. Saddle points are allowed. The Hessian is

∂2ψ

∂xi∂xj

has eigenvalues λi, but ∇2ψ = 0 =⇒
∑

i λi = 0 so λi must be both positive and
negative. (This has a loophole when all λi = 0 which is closed by our previous
proof).
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Integral Solutions

We want to solve the Poisson equation

∇2ψ = −ρ(x)

for a fixed ρ(x). Consider

ψ(x) =
λ

4πr

for λ fixed. Previously we showed that this solves ∇2ψ = 0, at least if r ̸= 0. By what
happens at r = 0? Something must be going on because∫

V
∇2ψdV =

∫
S
∇ψ · dS

= −λ

We can’t have ∇2ψ = 0 everywhere! Instead, ψ = λ
4πr must actually solve the Poisson

equation for some source ρ(x). But we know ρ(x) = 0 for all x ̸= 0. And we must have∫
ρ(x)dV = λ

The source is the 3D Dirac delta function:

ρ(x) = λδ3(x)

Here δ3(x) is an infinite spike at the origin, such that∫
V
f(x)δ3(x)dV = f(x = 0)

In particular ∫
V
δ3(x)dV = 1

So, we’ve learned that ψ = λ
4πr does not solve the Laplace equation, but

∇2ψ = −λδ3(x) =⇒ ψ(x) =
λ

4πr

Claim. ∇2ψ = −ρ has the integral solution

ψ(x) =
1

4π

∫
V ′

ρ(x′)

|x− x′|
dV ′

(V ′ should include any region with ρ(x′) = 0)
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Proof. Intuition is that you sum over “1
r” solutions, weighted by ρ(x′) for each x′.

∇2ψ(x) =
1

4π

∫
V ′
ρ(x′)∇2

(
1

|x− x′|

)
dV ′

(here ∇ differentiates x and treats x′ as constant) but

∇2

(
1

|x− x′|

)
= −4πδ3(x− x′)

(this is our previous result that ∇2 1
r = −4πδ3(x) but with the origin shifted to x′)

=⇒ ∇2ψ = −
∫
V ′
ρ(x′)δ3(x− x′)dV ′

= −ρ(x)

This powerful technique is known as the Green’s function approach.
Start of
lecture 20
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6 Tensors

6.1 What is a Tensor?

Not any list of n numbers constitutes a vector in Rn. They come with certain responsi-
bilities.

We start with a point x ∈ Rn. To attach some coordinates to this, we first introduce a
basis {ei, i = 1, . . . , n} such that

ei · ej = δij

And we write x = xiei. We call xi = (x1, . . . , xn) a “vector”. It’s a set of labels to
specify x.

Alternatively, we could use
e′i = Rijej (∗)

We insist that e′i · e′j = δij .

=⇒ RikRjkek · el = RikRjk = δij

=⇒ RR⊤ = 1

Such matrices are called orthogonal. We write R ∈ O(n). We have

detRR⊤ = (detR)2 = 1 =⇒ detR = ±1

If detR = +1, then R corresponds to a rotation and we write R ∈ SO(n) (special
orthogonal).
If detR = −1, it is a reflection + rotation. Under a change of basis, x doesn’t change.
We have

x = xiei = x′ie
′
i = x′iRijej

x · ek = xk = x′iRik

inverting:
=⇒ x′i = Rijxj

A tensor T is a generalisation of these ideas to an object with more indices. When
measured with respect to the basis {ei}, a tensor of rank p (or p-tensor) has indices

Ti1···ip

Under a change of basis (∗) we have the tensor transformation rule

T ′
i1···ip = Ri1j1 · · ·RipjpTj1···jp
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Note. 0-tensor is a number
1-tensor is a vector
2-tensor is a matrix such that T ′

ij = RikRjlTkl.

Example. There is one special rank 2 tensor in Rn:

δij =

{
1 i = j

0 otherwise

This is the same in all bases since

δ′ij = RikRjlδkl = δij

It’s an example of an invariant tensor.

Tensors as Maps

There is an equivalent, coordinate independent view. A p-tensor is a multi-linear map

T : Rn × · · · × Rn︸ ︷︷ ︸
p

→ R

such that
T (a,b, · · · , c) = Ti1···ipai1bi2cip

(multi-linear = linear in each entry seperately).

The tensor transformation rule ensures that the map is independent of the choice of
basis.

T (a,b, · · · c) = T ′
i1···ipa

′
i1b

′
i2 · · · c

′
ip

= (Ri1j1 · · ·Ripjp)Tj1···jp × (Ri1k1ak1) · · · (Ripkpckp)

= Tj1···jpaj1bj2 · · · cjp

Alternatively, we can think of a tensor as a map between lower rank tensors. For example,
a p-tensor can be viewed as a map

T : Rn × · · · × Rn︸ ︷︷ ︸
p−1

→ Rn

The map is
ai = Tij1···jp−1bj1 · · · cjp−1
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This is the way that tensors originally appear in maths and physics, typically as a map
from vectors to vectors.

u = Tv =⇒ uiTijvj

T is a matrix but, importantly, transforms as a tensor so the equation holds in all bases

T ′
ij = RikRjlTkl

or
T ′ = RTR⊤

Tensor Operations

� If S, T are tensors of the same rank, then so is S + T and λT for λ ∈ R.

� If S is a p-tensor and T is a q-tensor then we can form a (p+ q)-tensor known as
the tensor product

(S ⊗ T )i1···ipj1···jq = Si1···ipTj1···jq

for example, given two vectors a and b we can form the matrix

(a⊗ b)ij = aibj

� If T is a p-tensor then we can construct a (p− 2)-tensor by contraction:

δijTijk1···kp−2 = Tiik1···kp−2

for example
TrT = Tii

for a 2-tensor.

We can combine the tensor product and contraction. If P is a p-tensor and Q is a q-
tensor, we can form a (p + q − 2)-tensor. For example, contraction on the first index
gives

Pik1···kp−1Qil1···lq−1

for example given vectors a,b,
δijaibj = a · · ·b

is a zero-tensor. This is just the usual inner-product. Another example is matrix multi-
plication.

Start of
lecture 21 How do we know if a bunch of numbers T . . . form a tensor?

If T is a (p+ q)-tensor then for every q-tensor u,

vi1···ip = Ti1···ipj1···jquj1···jq

is a p-tensor.

Conversely, if v is a p-tensor for every q-tensor u, then T is a (p+ q)-tensor. This is the
quotient rule.
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Proof. Consider
uj1···jq = cj1 · · · djq

By assumption
vi1···ip = Ti1···ipj1···jqcj1 · · · djq

is a tensor, so
ai1 · · · bipvi1···ip = Ti1···ipj1···jqai1 · · · bipcj1 · · · djq

is a scalar, ∀ a, · · ·b, c, · · ·d hence T must be a (p+ q)-tensor.

(Anti)-Symmetry

A tensor that obeys
Tijp···q = ±Tjip···q

is said to be (anti)-symmetric in i, j (anti for −). This is a basis independent statement:

T ′
ijp···q = RikRjlRpr · · ·RqsTklr···s

= ±RikRjkRpr · · ·RqsTlkr···s

= ±T ′
jip···q

If T is (anti)-symmetric in all indices it is said to be totally (anti)-symmetric. A totally
anti-symmetric p-tensor in Rn has

(
n
p

)
independent components, and vanishes in p > n.

In R3, a 2-tensor Tij decomposes as

Sij =
1

2
(Tij + Tij)

Aij =
1

2
(Tij − Tji)

and Sij further decomposes as

Sij = Pij +
1

3
Qδij

where Pij is traceless (i.e. Pii = 0) and the trace of Sij is Q.

In R3 we have another invariant tensor εijk (see below) and we can write

Aij = εijkBk ⇐⇒ Bk
1

2
εklmAlm

So a 3× 3 matrix can be written as

Tij = Pij + εijkBk
1

3
Qδij

with P , B and Q are themselves tensors.
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Invariant Tensors

A tensor that obeys
T ′
i1···ip = Ri1j1 · · ·RipjpTj1···jp = Ti1···ip

for all R is called an invariant tensor or is said to be isotropic.

Any rank 0 tensor is isotropic. There are no rank 1 isotropic tensors. There is a rank 2,
and in R3, a rank 3 invariant tensor:

� δij with δ′ij = RikRjlδkl = δil

� εijk with

ε′ijk = RilRjmRknεlmn

= (detR)εijk

= εijk

Claim. The only isotropic tensors in R3 of rank 1 ≤ p ≤ 3 are

Tij = αδij

and
Tijk = βεijk

with α, β constant.

Proof. Look for a rank 1 tensor. Must have

T ′
i = RijTj = Ti

for

Rij =

−1 0 0
0 −1 0
0 0 1


hence T ′

1 = −T1 and T ′
2 = −T2 so T1 = T2 = 0. A similar argument gives T3 = 0.

Look for a rank 2 tensor:
T ′
ij = R̃ikR̃jlTkl = Tij

with

R̃ij =

 0 +1 0
−1 0 0
0 0 1


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(π2 rotation about z-axis) This gives T ′
13 = T23 and T ′

23 = −T13 hence T13 = T23 = 0.
Also T ′

11 = T22. Similar arguments show that Tij = 0 for i ̸= j and T11 = T22 = T33 = α

=⇒ Tij = αδij

For rank 3,
T ′
ijk = RilRjpRkqTlpq = Tijk

Use

R =

−1 0 0
0 −1 0
0 0 +1

 =⇒ T ′
133 = −T133, T ′

111 = −T111

=⇒ Tijk = 0 unless i, j, k distinct. Use R = R̃ to show that T ′
123 = −T213

=⇒ Tijk = βεijk

All higher rank invariant tensors in R3 are built from εijk and δij , for example isotropic
rank 4 tensor has the most general form

Tijkl = αδijδkl + βδikδjl + γδilδjk

for α, β, γ some constants.

Invariant Integrals

We can sometimes use this to do integrals, for example

Tij···k =

∫
V
f(r)xixj · · ·xkdV

(V is a spherically symmetric region and r = |x|). Under a rotation

T ′
ij···k = RipRjq · · ·RkrTpq···r

=

∫
V
f(r)x′ix

′
j · · ·x′kdV

(x′i = Ripxp). Change variables to x′. Both r = |x| and V are invariant

=⇒ T ′
ij···k = Tij···k

so must be proportional to an invariant tensor.
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Example. Consider the integral over 3D ball of radius R:

Tij =

∫
V
ρ(r)xixjdV

Necessarily = αδij for some α. Take the trace:

=⇒
∫
V
ρ(r)r2dV = 3α

(δii = 3)

=⇒ Tij =
1

3
δij

∫
V
ρ(r)r2dV

Start of
lecture 22 Tensor Fields

A tensor field over R3 assigns a tensor Ti···k(x) to each point x ∈ R3. This generalises
the vector field

F : R3 → R3

to
T : R3 → Rm

with m = # components of the tensor.

Tensor fields have one further operation: we can differentiate to build higher rank tensors.

Example. If ϕ is a scalar field then

∇ϕ =
∂ϕ

∂xi
ei

is a vector field, and so
∂ϕ

∂xi

transforms as a 1-tensor.

More generally, if T is a p-tensor field then we can construct a (p+ q)-tensor field

Xi1···iqj1···jp(x) =
∂

∂xi1
· · · ∂

∂xiq
Tj1···jp(x)

To check that this is indeed a tensor, we use

x′i = Rijxj =⇒ xj = Rijx
′
i

=⇒ ∂

∂x′i
=
∂xj
∂x′i

∂

∂xj
= Rij

∂

∂xj

( ∂
∂x transforms as a tensor.)
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6.2 Physical Examples

The simplest examples of tensors are just matrices.

In a material, an applied electric field E will give a current J is given by

Ji = σijEj

where σij is the conductivity tensor. This is the grown-up version of Ohm’s law.

Note. In 3D, isotropic materials necessarily have

σij = σδij

with σ the conductivity.
In 2D (i.e. thin materials) then isotropy means

σij = δxxδij + δxyεij

=

(
δxx δxy
−δxy δxx

)
(σxy is the Hall conductivity).

In Newtonian mechanics, a rigid body has

L = Iω

(L is angular momentum, ω is angular velocity), where I is the inertia tensor. If the
body is made of particles of mass ma, rotating as

ẋa = ω × xa

then

L =
∑
a

maxa × ẋa

=
∑
a

maxa × (ω × xa)

=
∑
a

ma(|xa|2ω − (xa · ω)xa)

=⇒ L = Iijωj

with
Iij =

∑
a

ma(|xa|2δij − (xa)i(xa)j)

For a continuous object,

Iij =

∫
V
ρ(x)(|x|2δij − xixj)dV
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Example (A Sphere). A ball of radius R and density ρ(r) has

Iij =

∫
V
ρ(r)(r2δij − xixj)dV

=
8π

3
δij

∫ R

0
drρ(r)r4
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Example (A Cylinder).

M = 2πa2Lρ

In cylindrical polar,
x = r cosϕ x = r sinϕ

I33 =

∫
V
ρ(x2 + y2)dV

= ρ

∫ 2π

0
dϕ

∫ a

0
dr

∫ +L

−L
dz · r · r2

= ρπLa4

I33 =

∫
V
ρ(y2 + z2)dV

= ρ

∫ 2π

0
dϕ

∫ a

0
dr

∫
−L

+Lr(r2 sin2 ϕ+ z2)

= ρπa2L

(
1

2
a2 +

2

3
L2

)
= I22 by symmetry

I13 = −ρ
∫
V
xzdV

= −ρ
∫ 2π

0
dϕ

∫ a

0
dr

∫ +L

−L
dzr2z cosϕ

= −ρ
∫ 2π

0
dϕ cosϕC

= 0

All other off diagonal entries vanish similarly, so for a cylinder

I = diag

(
M

(
a2

4
+
L2

3

)
,M

(
a2

4
+
L2

3

)
,
1

2
Ma2

)
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For a general body, and a general choice of basis, Iij will not be diagonal. However,
Iij = Iji so there exist an R ∈ SO(3) such that

I ′ = RIR⊤ = diag(I1, I2, I3)

i.e. every body has a preferred set of axes such that I is diagonal.

From L = Iω, if the angular velocity, ω is aligned with one of these axes then L ∥ ω.
Otherwise L is not parallel to ω and this is the reason things wobble! (see classical
dynamics).
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