% vim: tw=50 % 03/02/2022 11AM \begin{example}[Simpson's Paradox] \[ A = \{\text{change colour}\}, \qquad B = \{\text{blue}\} \qquad B^c = \{\text{green}\} \] \[ C = \{\text{Cambridge}\} \qquad C^c = \{\text{Oxford}\} \] \[ \PP(A \mid B \cap C) > \PP(A \mid B^c \cap C) \] \[ \PP(A \cap B \cap C^c) > \PP(A \mid B^c \cap C^c) \] \[ \cancel{\implies} \PP(A \mid B) > \PP(A \mid B^c) \] \end{example} \subsubsection*{Law of Total Probability for Conditional Probabilities} Suppose $C_1, C_2, \dots$ a partition of $B$. \begin{align*} \PP(A \mid B) &= \frac{\PP(A \cap B)}{\PP(B)} \\ &= \frac{\PP \left( A \cap \left( \bigcup_n C_n \right) \right)}{\PP(B)} \\ &= \frac{\PP \left( \bigcup_n \left( A \cap C_n \right) \right)}{\PP(B)} \\ &= \frac{\sum_n \PP (A \cap C_n)}{\PP(B)} \\ &= \frac{\sum_n \PP (A \mid C_n) \PP(C_n)}{\PP(B)} \\ &= \sum_n \PP(A \mid C_N) \frac{\PP(B \cap C_n)}{\PP(B)} \\ &= \sum_n \PP(A \mid C_n) \frac{\PP(C_n)}{\PP(B)} \end{align*} Conclusion: \[ \PP(A \mid B) = \sum_n \PP(A \mid C_n) \PP(C_n \mid B) \] Special case: \begin{itemize} \item If all $\PP(C_n)$ are equal, then all $\PP(C_n \mid B)$ are equal too. \item If $\PP(A \mid C_n)$s all equal, then $\PP(A \mid B) = \PP(A \mid C_n)$ also. \end{itemize} \begin{example*} Uniform permutation $(\sigma(1), \dots, \sigma(52)) \in \sum_{52}$ (``well-shuffled cards''). $\{1, 2, 3, 4\}$ are \emph{aces}. What is $\PP(\{\sigma(1), \sigma(2) \text{ both aces}\})$? \[ A = \{\sigma(1), \sigma(2) \text{ aces}\}, \qquad B = \{\sigma(1) \text{ is ace}\} = \{\sigma(1) \le 4\} \] \[ C_1 = \{\sigma(1) = 1\}, \dots, C_4 = \{\sigma(1) = 4\} \] \begin{note*} \begin{itemize} \eqitem \begin{align*} \PP (A \mid C_i) &= \PP(\sigma(2) \in \{1, 2, 3, 4\} \mid \sigma(1) = i) &&i \le 4 \\ &= \frac{3}{51} \end{align*} \item $\PP(C_1) = \cdots = \PP(C_4) = \frac{1}{52}$ \end{itemize} \end{note*} So conclude: \[ \PP(A \mid B) = \frac{3}{51} \] \[ \PP(A) = \PP(B) \times \PP(A \mid B) = \frac{4}{52} \times \frac{3}{51} \] \end{example*} \newpage \section{Discrete Random Variables} Motivation: Roll two dice. \[ \Omega = \{1, \dots, 6\}^2 = \{(i, j) : 1 \le i, j \le 6\} \] Restrict attention to first dice, for example $\{(i, j) : i = 3\}$, or sum of dice values for example $\{(i, j) : i + j = 8\}$, or max of dice, for example $\{(i, j) : i, j \le 4, i \text{ or } j = 4\}$. \\ \ul{Goal}: ``Random real-valued measurements''. \begin{definition*} A \emph{discrete random variable} $X$ on a probability space $(\Omega, \mathcal{F}, \PP)$ is a function $X : \Omega \to \RR$ such that \begin{itemize} \item $\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}$ \item $\mathrm{Im}(X)$ is finite or countable (subset of $\RR$) \end{itemize} If $\Omega$ finite or countable and $\mathcal{F} = \mathcal{P}(\Omega)$ then both bullet points hold automatically. \end{definition*} \begin{example*}[Part II Applied Probability] \begin{center} \includegraphics[width=0.6\linewidth] {images/cb1b08768f4511ec.png} \end{center} \[ \Omega = \{\text{countable subsets $(a_1, a_2, \dots)$ of $(0, \infty)$}\} \] \begin{align*} N_t &= \text{number of arrivals by time $t$} \\ &= |\{a_i : a_i \le t\}| \in \{0, 1, 2, \dots\} \end{align*} is a discrete random variable for each time $t$. \end{example*} \begin{definition*} The \emph{probability mass function} of discrete random variable $X$ is the function $p_X : \RR \to [0, 1]$ given by \[ p_X(x) = \PP(X = x) \,\,\forall\,\,x \in \RR \] \begin{note*} \begin{itemize} \item if $x \not\in \mathrm{Im}(X)$ then \[ p_X(x) = \PP(\{\omega \in \Omega : X(\omega) = x\}) = \PP(\emptyset) = 0 \] \eqitem \begin{align*} \sum_{x \in \mathrm{Im}(X)} P_X(x) &= \sum_{x \in \mathrm{Im}(X)} \PP(\{\omega \in \Omega : X(\omega) = x\}) \\ &= \PP\left(\bigcup_{x \in \mathrm{Im}(x)} \left\{\omega \in \Omega : X(\omega) = x\right\}\right) \\ &= \PP(\Omega) \\ &= 1 \end{align*} \end{itemize} \end{note*} \end{definition*} \begin{example*} Event $A \in \mathcal{F}$, define $\mathbbm{1}_A : \Omega \to \RR$ by \[ \mathbbm{1}_A(\omega) = \begin{cases} 1 & \text{if $\omega \in A$} \\ 0 & \text{if $\omega \not \in A$} \end{cases} \] (``\emph{Indicator function of $A$}'') $\mathbbm{1}_A$ is a discrete random variable with $\mathrm{Im} = \{0, 1\}$. \\ Probability mass function: \[ \PP_{\mathbbm{1}_A}(1) = \PP(\mathbbm{1}_A = 1) = \PP(A) \] \[ \PP_{\mathbbm{1}_A}(0) = \PP(\mathbbm{1}_A = 0) = 1 - \PP(A) \] \[ \PP_{\mathbbm{1}_A}(x) = 0 \,\,\forall x \not\in \{0, 1\} .\] This encodes ``did $A$ happen?'' as a real number. \end{example*} \begin{remark*} Given a probability mass function $p_X$, we can always construct a probability space $(\Omega, \mathcal{F}, \PP)$ and a random variable defined on it with this probability mass function. \begin{itemize} \item $\Omega = \mathrm{Im}(X)$ i.e. $\{x \in \RR : p_X(x) > 0\}$. \item $\mathcal{F} = \mathcal{P}(\Omega)$ \item $\PP(\{x\}) = p_X(x)$ and extend to all $A \in \mathcal{F}$. \end{itemize} \end{remark*}