% vim: tw=50 % 01/02/2022 11AM \subsubsection*{Properties} \begin{itemize} \item $\PP(A \mid B) \ge 0$ \item $\PP(B \mid B) = \PP(\Omega \mid B) = 1$. \item $(A_n)$ disjoint events $\in \mathcal{F}$. \begin{claim*} $\PP \left( \bigcup_{n \ge 1} A_n \mid B \right) = \sum_{n \ge 1} \PP(A_n \mid B)$. \end{claim*} \begin{proof} \begin{align*} \PP \left( \bigcup_{n \ge 1} A_n \mid B \right) &= \frac{\PP \left( \left( \bigcup_{n \ge 1} A_n \right) \cap B \right)}{\PP(B)} \\ &= \frac{\PP \left( \bigcup_{n \ge 1} \left( A_n \cap B \right) \right)}{\PP(B)} \\ &= \frac{\sum_{n \ge 1} \PP (A_n \cap B)}{\PP(B)} \\ &= \sum_{n \ge 1} \PP(A \mid B) \end{align*} \end{proof} \end{itemize} \myskip $\PP( \bullet \mid B)$ is a function from $\mathcal{F} \to [0, 1]$ that satisfies the rules to be a probability measure $\Omega$. Consider $\Omega' = B$ (especially in finite / countable setting), $\mathcal{F}' = \mathcal{P}(B)$. Then $(\Omega', \mathcal{F}', \PP(\bullet \mid B))$ also satisfies the rules to be a probability measure on $\Omega'$. \[ \PP (A \cap B) = \PP(A) \PP(B \mid A) \] \[ \PP(A_1 \cap A_2 \cap \cdots \cap A_n) = \PP(A_1) \PP(A_2 \mid A_1) \PP(A_3 \mid A_1 \cap A_2) \cdots \PP(A_n \mid A_1 \cap \cdots \cap A_{n - 1}) .\] \begin{example*} Uniform permutation $(\sigma(1), \sigma(2), \dots, \sigma(n)) \in \sum_n$. \begin{claim*} \[ \PP(\sigma(k) = i_k \mid \sigma(i) = i, \dots, \sigma(k - 1) = i_{k - 1}) = \begin{cases} 0 & \text{if $i_k \in \{i_1, \dots, i_{k - 1}\}$} \\ \frac{1}{n - k + 1} & \text{if $i_k \not\in \{i_1, \dots, i_{k - 1}\}$} \end{cases} \] \end{claim*} \begin{proof} \begin{align*} \PP (\sigma(k) = i_k \mid \sigma(i) = i, \dots, \sigma(k - 1) = i_{k - 1}) &= \frac{\PP(\sigma(i) = i, \dots, \sigma(k) = i_k)}{\PP(\sigma(i) = i_1, \dots, \sigma(k - 1) = i_{k - 1})} \\ &= \frac{0 \text{ or } \frac{(n - k)!}{n!}}{\frac{(n - k + 1)!}{n!}} \\ &= \frac{(n - k)!}{(n - k + 1)!} \\ &= \frac{1}{n - k + 1} \end{align*} \end{proof} \end{example*} \subsubsection*{Law of Total Probability and Bayes' Formula} \begin{definition*} $(B_1, B_2, \dots) \subset \Omega$ is a \emph{partition} of $\Omega$ if: \begin{itemize} \item $\Omega = \bigcup_{n \ge 1} B_n$ \item $(B_n)$ are disjoint \end{itemize} \end{definition*} \begin{theorem*} $(B_n)$ a finite countable partition of $\Omega$ with $B_n \in \mathcal{F}$ and for all $n$ $\PP(B_n) > 0$, then for all $A \in \mathcal{F}$: \[ \PP(A) = \sum_{n \ge 1} \PP(A \mid B_n) \PP(B_n) .\] (Sometimes known as ``Partition Theorem''). \end{theorem*} \begin{proof} Note that $\bigcup_{n \ge 1} (A \cap B_n) = A$. \[ \PP(A) = \sum_{n \ge 1} \PP(A \cap B_n) = \sum_{n \ge 1} \PP(A \mid B_n) \PP(B_n) .\] \end{proof} \begin{theorem*}[Bayes' Formula] \[ \PP(B_n \mid A) = \frac{\PP(A \cap B_n)}{\PP(A)} = \frac{\PP(A \mid B_n) \PP(B_n)}{\sum_{m \ge 1} \PP(A \mid B_m) \PP(B_m)} .\] Rephrasing for $n = 2$: \[ \PP(B \mid A) \PP(A) = \PP(A \mid B) \PP(B) = \PP(A \cap B) .\] \end{theorem*} \noindent This allows us for example to calculate $\PP(B \mid A)$ given $\PP(A)$, $\PP(A \mid B)$ and $\PP(B)$. \setcounter{customexample}{0} \begin{example} Lecture course: $\frac{2}{3}$ probability that it is a weekday, and $\frac{1}{3}$ probability that it is a weekend. \[ \PP(\text{forget notes} \mid \text{weekday}) = \frac{1}{8} \] \[ \PP(\text{forget notes} \mid \text{weekend}) = \frac{1}{2} .\] What is $\PP(\text{weekend} \mid \text{forget notes})$? \[ B_1 = \{\text{weekend}\}, \qquad B_2 = \{\text{weekend}\}, \qquad A - \{\text{forget notes}\} .\] Law of Total Probability: \[ \PP( = \frac{2}{3} \times \frac{1}{8} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{12} + \frac{1}{6} = \frac{1}{4} .\] Bayes': \[ \PP(B_2 \mid A) = \frac{\frac{1}{3} \times \frac{1}{2}}{\frac{1}{4}} = \frac{2}{3} .\] \end{example} \begin{example} Disease testing: probability $p$ that you are infected, probability $1 - p$ that you are not. \[ \PP(\text{tests positive} \mid \text{infected}) = 1 - \alpha \] \[ \PP(\text{test positive} \mid \text{not infected}) = \beta \] Ideally both $\alpha$, $\beta$ are small (and ideally $p$ is small). \[ \PP(\text{infected} \mid \text{test positive}) .\] Law of Total Probability: \[ \PP(\text{test positive}) = p(1 - \alpha) + (1 - p)\beta .\] Bayes': \[ \PP(\text{infected} \mid \text{positive}) = \frac{p(1 - \alpha)}{p(1 - \alpha) + (1 - p)\beta} .\] Suppose $p \ll \beta$. Then \[ p(1 - \alpha) \ll (1 - p) \beta \] Then \[ \PP(\text{infected} \mid \text{positive}) \sim \frac{p(1 - \alpha)}{(1 - p)\beta} \] \end{example}