% vim: tw=50 % 27/01/2022 11AM \begin{proof} Use induction $n^{-1} \mapsto n$. For $n = 2$, check Example Sheet 1, Q4(e). For the inductive step: \begin{align*} \PP \left( \bigcup_{i = 1}^n A_i \right) &= \PP \left( \left( \bigcup_{i = 1}^{n - 1} A_i \right) \cup A_n \right) \\ &= \PP \left( \bigcup_{i = 1}^{n - 1} A_i \right) + \PP (A_n) - \PP \left( \left( \bigcup_{i = 1}^{n - 1} A_i \right) \cap A_n \right) \end{align*} Idea: \[ \left( \bigcup_{i = 1}^{n - 1} A_i \right) \cap A_n = \bigcup_{i = 1}^{n - 1} (A_i \cap A_n) \] \[ \implies \bigcap_{i \in J} (A_i \cap A_n) = \bigcap_{i \in J \cup \{n\}} A_i \] ($J \subset \{1, \dots, n - 1\}$). \begin{align*} \PP \left( \bigcup_{i = 1}^n A_i \right) &= \sum_{\substack{J \subset \{1, \dots, n - 1\}\\J \neq \emptyset}} (-1)^{|J| + 1} \PP \left( \bigcap_{i \in J} A_i \right) + \PP(A_n) - \sum_{\substack{J \subset \{1, \dots, n - 1\}\\J \neq \emptyset}} (-1)^{|J| + 1} \PP \left( \bigcap_{i \in J \cup \{n\}} A_i \right) \\ &= \sum_{\substack{I \subset \{1, \dots, n - 1\}\\I \neq \emptyset}} (-1)^{|I| + 1} \PP \left( \bigcap_{i \in I} A_i \right) + \PP (A_n) + \sum_{\substack{I \subset \{1, \dots, n\}\\n \in I, |I| \ge 2}} (-1)^{|I| + 1} \PP \left( \bigcap_{i \in I} A_i \right) \\ &= \sum_{\substack{I \subset \{1, \dots, n\}\\I \neq \emptyset}} (-1)^{|I| + 1} \PP \left( \bigcap_{i \in I} A_i \right) \end{align*} Where $J \cup \{n\} \mapsto I$, so $-(-1)^{|J| + 1} \mapsto (-1)^{|I|}$. \end{proof} \subsubsection*{Bonferroni Inequalities} \ul{Question}: What if you \emph{truncate} Inclusion-Exclusion Principle? \\ Recall: $\PP (\cup A_i) \le \sum \PP(A_i)$ (\emph{union bound}). \begin{itemize} \item When $r$ is even: \[ \PP \left( \bigcup_{i = 1}^n A_i \right) \le \sum_{k = 1}^r (-1)^{k + 1} \sum_{i_1 < \cdots < i_k} \PP (A_{i_1} \cap \cdots \cap A_{i_k}) \] \item When $r$ is odd: \[ \PP \left( \bigcup_{i = 1}^n A_i \right) \ge \sum_{k = 1}^r (-1)^{k + 1} \sum_{i_1 < \cdots < i_k} \PP (A_{i_1} \cap \cdots \cap A_{i_k}) \] \end{itemize} \myskip \ul{Question}: When is it good to truncate at for example $r = 2$? \begin{proof} Induction on $r$ and $n$. For $r$ odd: \begin{align*} \PP \left( \bigcup_{i = 1}^n A_i \right) &= \PP \left( \bigcup_{i = 1}^{n - 1} A_i \right) + \PP (A_n) - \PP \left( \bigcup_{i = 1}^{n - 1} (A_i \cap A_n) \right) \\ &\le \sum_{\substack{J \subset \{1, \dots, n - 1\}\\I \le |J| \le r}} (-1)^{|J| + 1} \PP \left( \bigcap_{i \in J} A_i \right) + \PP (A_n) - \sum_{\substack{J \subset \{1, \dots, n - 1\}\\1 \le |J| \le r - 1}} (-1)^{|J| + 1} \PP \left( \bigcap_{i \in J \cup \{n\}} A_i \right) \\ &\le \sum_{\substack{I \subset \{1, \dots, n\}\\1 \le |I| \le r}} (-1)^{|I| + 1} \PP \left( \bigcap_{i \in I} A_i \right) \end{align*} $r$ even is similar. \end{proof} \subsubsection*{Counting with Inclusion-Exclusion Principle} Uniform probability measure on $\Omega$, $|\Omega| < \infty$. \[ \PP (A) = \frac{|A|}{|\Omega|} \,\,\forall\,\, A \subseteq \Omega .\] Then $\forall\,\, A_1, \dots, A_n \subseteq \Omega$. \[ |A_1 \cup \cdots \cup A_n| = \sum_{k = 1}^n (-1)^{k + 1} \sum_{i_1 < \cdots < i_k} |A_{i_1} \cap \cdots \cap A_{i_k}| \] (and similar for Bonferroni Inequalities). \setcounter{customexample}{0} \begin{example} \emph{Surjections} $f : \{1, \dots, n\} \to \{1, \dots, n\}$ \[ \Omega = \{f : \{1, \dots, n\} \to \{1, \dots, m\}\} \qquad \text{all functions} \] \[ A = \{f : \mathrm{Im}(f) = \{1, \dots, m\}\} \qquad \text{all surjections} \] $\forall\,\, i \in \{1, \dots, m\}$. Define \[ B_i = \{f \in \Omega : i \not\in \mathrm{Im}(f)\} .\] Key observations: \begin{itemize} \item $A = B_1^c \cap \cdots \cap B_m^c = (B_1 \cup \cdots \cup B_m)^c$. \item $|B_{i_1} \cap \cdots \cap B_{i_k}|$ is nice to calculate! In particular, it is \[ |\{f \in \Omega : i_1, \dots, i_k \not\in \mathrm{Im}(f)\}| = (m - k)^n .\] \end{itemize} Inclusion-Exclusion Principle implies: \begin{align*} |B_1 \cup \cdots \cup B_m| &= \sum_{k = 1}^m (-1)^{k + 1} \sum_{i_1 < \cdots < i_k} |B_{i_1} \cap \cdots \cap B_{i_k}| \\ &= \sum_{k = 1}^m (-1)^{k + 1} {m \choose k} (m - k)^n \end{align*} \begin{align*} |A| &= m^n - \text{previous expression} \\ &= \sum_{k = 0}^m (-1)^k {m \choose k} (m - k)^n \end{align*} \end{example}