% vim: tw=50 % 25/01/2022 10AM \begin{proof}[(weaker version)] \[ \log(n!) = \log 2 + \log 3 + \cdots + \log n .\] \begin{center} \includegraphics[width=0.6\linewidth] {images/2778fac67de211ec.png} \end{center} \[ \ub{\textcolor{blue}{\int_1^n \log x \dd x}}_{\text{``Upper integral''}} \le \log(n!) \le \ub{\textcolor{red}{\int_1^{n + 1} \log x \dd x}}_{\text{``Lower integral''}} \] \[ \ub{n \log n - n = 1}_{\sim n \log n} \le \log (n!) \le \ub{(n + 1)\log (n + 1) - n}_{\sim n \log n} \] Hence $\log(n!) \sim n \log n$. \end{proof} \noindent Key idea: \emph{Sandwiching} between lower/upper integrals. \\ Useful: \begin{itemize} \item $\log x$ is increasing \item $\log x$ has nice integral! \end{itemize} \subsubsection*{(Ordered) Compositions} A \emph{composition} of $m$ with $k$ parts is sequence $(m_1, \dots, m_k)$ of non-negative integers with \[ m_1 + \cdots + m_k = m .\] For example, $3 + 0 + 1 + 2 = 6$. Bijection between compositions and sequences of $m$ stars and $k - 1$ dividers (stars and bars). So number of compositions is ${m + k - 1 \choose m}$. \\ Comments: Q11 on example sheet 1. \subsubsection*{Properties of Probability Measures} $(\Omega, \mathcal{F}, \PP) \leftarrow$ Probability space \begin{itemize} \item P1: \[ \PP : \mathcal{F} \to [0, 1] \] \item P2: $\PP(\Omega) = 1$. \item P3: \[ \PP \left( \bigcup_{n \ge 1} A_n \right) = \sum_{n \ge 1} \PP(A_n) \] $(A_n)_{n \ge 1}$ disjoint. ``Countable additivity''. \end{itemize} \subsubsection*{(1) Countable sub-additivity} $(A_n)_{n \ge 1}$ sequence of events in $\mathcal{F}$. Then \[ \PP \left( \bigcup_{n \ge 1} A_n \right) \le \sum_{n \ge 1} \PP(A_n) .\] Intuition: this sum can ``double count'' some sub-events. \begin{proof} Idea: rewrite $\bigcup_{n \ge 1} A_n$ as a \emph{disjoint} union. Define $B_1 = A_1$ and $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n - 1})$ for $n \ge 2$ (which is in $\mathcal{F}$ by example sheet). So \begin{itemize} \item $\bigcup_{n \ge 1} B_n = \bigcup_{n \ge 1} A_n$ \item $(B_n)_{n \ge 1}$ disjoint (by construction) \item $B_n \subseteq A_n \implies \PP(B_n) \le \PP(A_n)$ (by example sheet) \end{itemize} Hence \[ \PP \left( \bigcup_{n \ge 1} A_n \right) = \PP \left( \bigcup_{n \ge 1} B_n \right) = \sum_{n \ge 1} \PP(B_n) \le \sum_{n \ge 1} \PP(A_n) .\] \end{proof} \subsubsection*{(1) Continuity} $(A_n)_{n \ge 1}$ is increasing sequence of events in $\mathcal{F}$ i.e. $A_n \subseteq A_{n + 1}$. Then $\PP(A_n) \le \PP(A_{n + 1})$. So $\PP(A_n)$ converges as $n \to \infty$. (Because bounded and increasing.) In fact, $\lim_{n \to \infty} \PP(A_n) = \PP \left( \bigcup_{n \ge 1} A_n \right)$. \begin{proof} Re-use the $B_n$s! \begin{itemize} \item $\bigcup_{k = 1}^n B_k = A_n$ (disjoint union) \item $\bigcup_{n \ge 1} B_n = \bigcup_{n \ge 1} A_n$ \end{itemize} \[ \PP(A_n) = \sum_{k = 1}^n \PP(B_k) \to \sum_{k \ge 1} \PP(B_k) \] \[ \PP \left( \bigcup_{n \ge 1} A_n \right) = \PP \left( \bigcup_{n \ge 1} B_n \right) = \sum_{n \ge 1} \PP(B_n) \] \end{proof} \noindent Try Q6. \subsubsection*{(3) Inclusion-Exclusion Principle} Background: $\PP(A \cup B) = \PP(A) + \PP(B) - \PP(A \cap B)$. \\ Similarly: for $A, B, C \in \mathcal{F}$ \[ \PP(A \cup B \cup C) = \PP(A) + \PP(B) + \PP(C) - \PP(A \cap B) - \PP(B \cap C) - \PP(C \cap A) + \PP(A \cap B \cap C) .\] \begin{theorem*}[Inclusion Exclusion Principle] Let $A_1, A_2, \dots, A_n \in \mathcal{F}$. Then: \begin{align*} \PP \left( \bigcup_{i = 1}^n A_i \right) &= \sum_{i = 1}^n \PP(A_i) - \sum_{1 \le i_1 < i_2 \le n} \PP(A_{i_1} \cap A_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n} \PP(A_{i_1} \cap A_{i_2} \cap A_{i_3}) \\ &\,\,\,\,\, - \cdots + (-1)^{n + 1} \PP(A_1 \cap \cdots \cap A_n) \end{align*} Or, abbreviated: \[ \PP \left( \bigcup_{i = 1}^n A_i \right) = \sum_{\substack{I \subset \{1, \dots, n\}\\I \neq \emptyset}} (-1)^{|I| + 1} \PP \left( \bigcap_{i \in I} A_i \right) \] \end{theorem*}