% vim: tw=50 % 10/03/2022 11AM \begin{proof}[(CLT with MGFs)] Assume WLOG $\mu = 0$ and $\sigma^2 = 1$. (So $\EE[X_i^2] = 1$). (In general $X \mapsto \frac{X - \mu}{\sqrt{\sigma^2}}$). \\ \ul{Goal}: \[ \frac{S_n}{\sqrt{n}} \stackrel{d}{\to} \mathrm{N}(0, 1) \] Study MGF of $\frac{S_n}{\sqrt{n}}$. \begin{align*} m_{X_i}(\theta) &= 1 + \frac{\theta^2}{2} + o \left( \frac{1}{n} \right) \\ m_{\frac{S_n}{\sqrt{n}}}(\theta) &= \EE[e^{\theta \frac{S_n}{\sqrt{n}}}] \\ &= \EE[e^{\frac{\theta}{\sqrt{n}}S_n}] \\ &= m_{S_n} \left( \frac{\theta}{\sqrt{n}} \right) \\ &= \left( m_{X_1} \left( \frac{\theta}{\sqrt{n}} \right) \right)^n \\ &= \left( 1 + \frac{\theta^2}{2n} + o \left( \frac{1}{n} \right) \right)^n \\ &\to e^{\frac{\theta^2}{2}} \end{align*} \end{proof} \subsubsection*{Inequalities for $\EE[f(X)]$} Motivation: $f(x) = x^2$. We know \[ \EE[f(X)] \ge f(\EE[X]) \] via $\mathrm{Var}(X) \ge 0$. What about general $f$? \begin{definition*} A function $f : \RR \to \RR$ is \emph{convex} if $\forall\,\,x, y \in \RR$ and $t \in [0, 1]$, \[ f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/d8b19e44a31f11ec.png} \end{center} (Aside: region above $f$ is \emph{convex} in $\RR^2$.) \end{definition*} \noindent \ul{Consequence}: $\forall\,\,y$ there exists a line $l(x) = mx + c$ such that \begin{itemize} \item $l(x) \le f(x)$ for all $x$ \item $l(y) = f(y)$ \end{itemize} \begin{proof} Convexity implies that for all $x < y < z$, \[ \frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/425d1828a32011ec.png} \end{center} hence \[ M^- := \sup_{x < y} \frac{f(y) - f(x)}{y - x} \le \inf_{z > y} \frac{f(z) - f(y)}{z - y} =: M^+ \] any value $m \in [M^-, M^+]$ works as the gradient of $l(\bullet)$. \end{proof} \begin{definition*} $f$ is concave if and only if $-f$ is convex. \begin{center} \includegraphics[width=0.6\linewidth] {images/67a5fea6a32011ec.png} \end{center} \end{definition*} \noindent \ul{Fact}: if $f$ is twice differentiable then \[ f \text{ convex} \iff f''(x) \ge 0 \,\,\forall\,\,x \] for example $f(x) = \frac{1}{x}$ is convex on $(0, \infty)$ and concave on $(-\infty, 0)$. \subsubsection*{Jensen's Inequality} \begin{theorem*}[Jensen's Inequality] $X$ a random variable, $f$ convex: \\ Then $\EE[f(X)] \ge f(\EE[X])$. (reverse if $f$ concave) \end{theorem*} \begin{proof} Set $y = \EE[X]$ as in ($*$), $l(x) = mx + c$, such that $l(y) = f(y) = f(\EE[X])$ and $f \ge l$. \begin{align*} \EE[f(X)] &\ge \EE[l(X)] \\ &= \EE[mX + c] \\ &= m\EE[X] + c \\ &= my + c \\ &= f(\EE[X]) \end{align*} If $f$ \emph{strictly convex}, then $\forall t \in (0, 1)$, $\forall x \neq y$, \[ f(tx + (1 - t)y) < tf(x) + (1 - t)f(y) \] Then equality in Jensen's inequality only if $X = \EE[X]$ with $\PP = 1$ (for example constant random variable). \end{proof} \myskip Informal comment: \[ \text{Jensen's Inequality} \ge \text{Most other inequalities!} \] \subsubsection*{Application to Sequences} AM-GM inequality: $x_1, \dots, x_n \in (0, \infty)$ \[ \frac{x_1 + \cdots + x_n}{n} \ge \left( \prod_{i = 1}^n x_i \right)^{1/n} \] Case $n = 2$: \[ \frac{x + y}{2} \ge \sqrt{xy} \] \begin{proof} Rearrange to get $(x - y)^2 \ge 0$. \end{proof} \myskip General proof: \\ Let $X$ be a random variable taking values $\{x_1, \dots, x_n\}$ each with probability $\frac{1}{n}$. \\ Take: $f(x) = -\log x$. Check convex: second derivative $\ge 0$. \\ Jensen: \[ \EE[f(X)] \ge f(\EE[X]) \] \[ -\frac{\log x_1 + \cdots + \log x_n}{n} \ge -\log \left( \frac{x_1 + \cdots + x_n}{n} \right) \] \[ \log ((x_1 \cdots x_n)^{1/n}) \le \log \left( \frac{x_1 + \cdots + x_n}{n} \right) \] $\log x$ and $e^x$ are increasing so \[ \left( \prod_i x_i \right)^{1/n} \le \frac{x_1 + \cdots + x_n}{n} \] \subsubsection*{Sampling a Continuous Random Variable} \begin{theorem*} $X$ a continuous random variable with CDF $F$. Then if $U \sim U[0, 1]$, we have \[ Y = F^{-1}(U) \sim X \] \end{theorem*} \begin{proof} Goal: find CDF of $Y$. \begin{align*} \PP(Y \le x) &= \PP(F^{-1}(U) \le x) \\ &= \PP(U \le F(x)) \\ &= F(x) \end{align*} so CDF of $Y = \text{CDF of $X$}$. So $Y \sim X$. \end{proof} \subsubsection*{Rejection Sampling} Idea: Uniform on $[0, 1]^d$ is easy. (take $(U^{(1)}, \dots, U^{(d)})$ IID on $U[0, 1]$.) \begin{center} \includegraphics[width=0.6\linewidth] {images/2ce4b6dea32211ec.png} \end{center} What about uniform on $A$?