% vim: tw=50 % 22/01/2022 11AM \begin{example}[Coincident Birthdays] $n$ people. What is the probability that at least two share a birthday? \\ Assumptions: \begin{itemize} \item No leap years! (365 days) \item All birthdays equally likely. \end{itemize} Now note that \[ \Omega = \{1, \dots, 365\}^n \qquad \mathcal{F} = \mathcal{P}(\Omega) \] \[ A = \{\text{at least 2 people share a birthday}\} \] \[ A^c = \{\text{all $n$ birthdays different}\} \] \[ \PP(A^c) = \frac{|A^c|}{|\Omega|} = \frac{365 \times 364 \times \cdots \times (365 - n + 1)}{365^n} \] so \[ \PP(A) = 1 - \frac{365 \times 364 \times \cdot \times (365 - n + 1)}{365^n} \] \[ \begin{cases} n = 22: & \PP(A) \approx 0.476 \\ n = 23: & \PP(A) \approx 0.507 \end{cases} \] $n \ge 366$: $\PP(A) = 1$. \end{example} \subsection{Choosing uniformly from infinite countable set} (For example $\Omega = \NN$ or $\Omega = \QQ \cap [0, 1]$) Suppose possible, then \begin{itemize} \item $\PP(\{\omega\}) = \alpha > 0 \,\,\forall\,\, \omega \in \Omega$. Then \[ \PP(\Omega) = \sum_{\omega \in \Omega} \PP(\{\omega\}) = \sum_{\omega \in \Omega} \alpha = \infty \qquad \contradiction \] \item $\PP(\{\omega\}) = 0 \,\,\forall\,\, \omega \in \Omega$. Then \[ \PP(\Omega) = \sum_{\omega \in \Omega} \PP(\{\omega\}) = \sum_{\omega \in \Omega} 0 = 0 \qquad \contradiction \] \end{itemize} Note possible, but still, there exist lots of interesting probability measures of $\NN$! \subsection{Combinatorial Analysis} Subsets: $\Omega$ finite. $|\Omega| = n$. \\ Question: How many ways to \emph{partition} $\Omega$ into $k$ disjoint subsets $\Omega_1, \dots, \Omega_k$ with $|\Omega_i| = n_i$ (with $\sum_{i = 1}^k n_i = n$)? \begin{align*} M &= {n \choose _1} {n - n_1 \choose n_2}{n - n_1 - n_2 \choose n_3} \cdots {n - (n_1 + \cdots + n_{k - 1} \choose n_k} \\ &= \frac{n!}{n_1!\cancel{(n - n_1)!}} \times \frac{\cancel{(n - n_1)!}}{n_2!\cancel{(n - n_1 - n_2)!}} \times \cdots \times \frac{ \cancel{[n - (n_1 + \cdots + n_{k - 1})]!}} {n_k! 0!} \\ &= \frac{n!}{n_1!n_2! \cdots n_k!} \\ &=: {n \choose n_1,n_2,\dots,n_k} \end{align*} \noindent Key sanity check: Does ordering of subsets matter? For example, do we have \[ \big[ \Omega_2 = \{3, 4, 7\}, \Omega_3 = \{1, 5, 8\} \big] \stackrel{\text{\color{red} different}}{=} \big[ \Omega_2 = \{1, 5, 8\}, \Omega_3 = \{3, 4, 7\} \big] ?\] Yes! \subsubsection*{Random Walks} \[ \Omega = \{(X_0, X_1, \dots, X_n) : X_0 = 0, |X_k - X_{k - 1}| = 1, k = 1, \dots, n\} \qquad |\Omega| = 2^n .\] \begin{center} \includegraphics[width=0.6\linewidth] {images/b3e344007b7911ec.png} \end{center} Could ask: $\PP(X_n = 0)$? \[ \PP(X_n = n) = \frac{1}{2^n} \] \[ \PP(X_n = 0) = 0 \qquad \text{if $n$ is odd} \] If $n$ is even? \\ Idea - Choose $\frac{n}{2}$ $k$s for $X_k = X_{k - 1} + 1$ and the rest $X_k = X_{k - 1} - 1$. So \begin{align*} \PP(X_n = 0) &= 2^{-n} {n \choose n/2} \\ &= \frac{n!}{2^n \left[ \left( \frac{n}{2} \right) ! \right]^2} \end{align*} Question: What happens when $n$ is large? \subsubsection*{Stirling's Formula} \begin{notation*} $(a_n)$, $(b_n0$ two sequences. \end{notation*} \noindent Say $a_n \sim b_n$ as $n \to \infty$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$. For example, $n^2 + 5n + \frac{6}{n} \sim n^2$. Non-example: $\exp\left( n^2 + 5n + \frac{6}{n} \right) \not\sim \exp(n^2)$. \begin{theorem*}[Stirling] \[ n! \sim \sqrt{2\pi} n^{n + 1/2} e^{-n} \] as $n \to \infty$. \\ Weaker version: \[ \log(n!) \sim n \log n .\] \end{theorem*}