% vim: tw=50 % 01/03/2022 11AM \noindent \ul{Variance}: \[ \mathrm{Var}(X) = \EE[(X - \EE[X])^2] = \EE[X^2] - (\EE[X])^2 \] \[ \mathrm{Var}(aX + b) = a^2 \mathrm{Var}(X) \] \subsubsection*{Examples} Uniform: $U \sim U[a, b]$. \[ \EE[U] = \int_a^b x \frac{\dd x}{b - a} = \frac{\half b^2 - \half a^2}{b - a} = \frac{a + b}{2} \] \[ \EE[U^2] = \int_a^b x^2 \frac{\dd x}{b - a} = \frac{\frac{1}{3} b^3 - \frac{1}{3} a^3}{b - a} = \frac{1}{3} (a^2 + ab + b^2) \] \begin{align*} \mathrm{Var}(U) &= \frac{1}{3} (a^2 + ab + b^2) - \left( \frac{a + b}{2} \right)^2 \\ &= \frac{(b - a)^2}{12} \end{align*} \myskip Exponential: $X \sim \mathrm{Exp}(\lambda)$. \begin{align*} \EE[X] &= \int_0^\infty \lambda x e^{-\lambda x} \dd x \\ &= [-x e^{-\lambda x}]_0^\infty + \int_0^\infty e^{-\lambda x} \dd x \\ &= \frac{1}{\lambda} \\ E[X^2] &= \int_0^\infty \lambda x^2 e^{-\lambda x} \dd x \\ &= [-x^2 e^{-\lambda x}]_0^\infty + 2\int_0^\infty x e^{-\lambda x} \dd x \\ &= 0 + \frac{2}{\lambda^2} \\ \mathrm{Var}(X) &= \frac{2}{\lambda^2} - \frac{1}{\lambda^2} \\ = \frac{1}{\lambda^2} \end{align*} \ul{Goal}: $U \sim \mathrm{Unif}[a, b]$, $\tilde{U} \sim \mathrm{Unif}[0, 1]$. Write $U = (b - a) \tilde{U} + a$, and carry all calculations over. \subsubsection*{Transformations of Continuous Random Variables} \ul{Goal}: View $g(X)$ as a continuous random variable with its own density. \begin{theorem*} \begin{itemize} \item $X$ continuous random variable with density $f$ \item $g : \RR \to \RR$ continuous such that \begin{enumerate}[(i)] \item $g$ is either strictly increasing or decreasing \item $g^{-1}$ is differentiable \end{enumerate} \end{itemize} Then $g(X)$ is a continuous random variable with density \[ \hat{f}(x) = f(g^{-1}(x)) \ub{\left| \dfrac{}{x} g^{-1}(x) \right|}_{(\dag)} \tag{$*$} \] ($\dag$ is $\ge 0$ if $g$ is strictly increasing). \end{theorem*} \subsubsection*{Comments} \begin{itemize} \item Density is? Something to integrate over to get a probability \item ($*$) \emph{is} integration by substitution \item Proof use CDFs (which \emph{are} probabilities). \end{itemize} \begin{proof} \begin{align*} F_{g(X)}(x) &= \PP(g(X) \le x) \\ &= \PP(X \le g^{-1}(x)) \\ &= F_X(g^{-1}(X)) \end{align*} Differentiate: \begin{align*} F_{g(X)}'(x) &= F_X'(g^{-1}(x)) \dfrac{}{x} g^{-1}(x) \\ &= f(g^{-1}(x)) \dfrac{}{x} g^{-1}(x) \end{align*} ($g$ strictly decreasing is similar $\to$ exercise (revision!)) \end{proof} \myskip \ul{Sanity check}: We've got two expressions for $\EE[g(x)]$ (assume: $\mathrm{Im}(X) = \mathrm{Im}(g(X)) = (-\infty, \infty)$) new expression: \begin{align*} \EE[g(X)] &= \int_{-\infty}^\infty x \hat{f}(x) \dd x \\ &= \int_{-\infty}^\infty x f(g^{-1}(x)) \dfrac{}{x} g^{-1}(x) \dd x \end{align*} Substitute: $g^{-1}(x) = u$. So $\dd u = \dd x \dfrac{}{x} g^{-1}(x)$. \[ = \int_{u = -\infty}^\infty g(u) f(u) \dd u \] \begin{example*} \begin{itemize} \item $X \sim \mathrm{Exp}(\lambda)$, $Y = cX$. \[ \PP(Y \le x) = \PP \left( X \le \frac{X}{c} \right) = 1 - e^{-\lambda \frac{x}{c}} = 1 - e^{- \frac{\lambda}{c} x} = \text{CDF of $\mathrm{Exp} \left( \frac{\lambda}{c} \right)$} \] \item $\hat{f}(x) = \frac{1}{c} f \left( \frac{x}{c} \right) = \frac{1}{c} \lambda e^{-\lambda \frac{x}{c}} = \frac{\lambda}{c} e^{- \frac{\lambda}{c} x}$. \end{itemize} \end{example*} \begin{example*} The \emph{Normal} Distribution (also \emph{Gaussian}). Range: $(-\infty, \infty)$. Two parameters: $\mu \in (-\infty, \infty), \sigma^2 \in (0, \infty)$. (the mean and variance). \[ X \sim \mathrm{N}(\mu, \sigma^2) \] \[ f_X(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left( -\frac{(x - \mu)^2}{2\sigma^2} \right) \] Special case: ``Standard normal'': $Z \sim \mathrm{N}(0, 1)$ \[ f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} =: \varphi(x) \] \end{example*} \subsubsection*{Comments} \begin{itemize} \item $\frac{1}{\sqrt{2\pi}}$ is a ``\emph{normalising constant}''. (Recall we need $\int f \dd x = 1$). \item $e^{-\frac{x^2}{2}} =$ very rapid decay as $x \to \pm \infty$. \item $\mathrm{N}(\mu, \sigma^2)$ used for modelling non-negative quantity. (because if $\mu$ is large $\PP(\mathrm{N}(\mu, \sigma^2) < 0)$ is \emph{very} small). \end{itemize} \subsubsection*{Checklist} ($Z$, standard normal) \begin{enumerate}[(i)] \item $f_Z$ is a density. \begin{proof} \[ I = \int_{-\infty}^\infty e^{-\frac{x^2}{2}} \dd x \] Clever idea: use $I^2$ instead \[ I^2 = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-\frac{u^2}{2}} e^{-\frac{v^2}{2}} \dd u \dd v = \iint e^{-\frac{u^2 + v^2}{2}} \dd u \dd v \] Polar coordinates: $u = r\cos\theta$, $v = r\sin\theta$: \[ = \int_{r = 0}^\infty \int_{\theta = 0}^{2\pi} re^{-\frac{r^2}{2}} \dd r \dd \theta = 2\pi \int_{r = 0}^\infty re^{-\frac{r^2}{2}} \dd r = 2\pi \] \end{proof} \item $\EE[Z] = 0$ by symmetry. \item $\mathrm{Var}(Z) = 1$. \begin{proof} Sufficient to prove $\EE[Z^2] = 1$. \begin{align*} \EE[Z^2] &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty x^2 e^{- \frac{x^2}{2}} \dd x \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty x \cdot x e^{-\frac{x^2}{2}} \dd x \\ &= \left[ -x \cdot \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \right]_{-\infty}^\infty + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-\frac{x^2}{2}} \dd x \\ &= 1 \end{align*} \end{proof} \end{enumerate}