% vim: tw=50 % 26/02/2022 11AM \begin{proof} \begin{itemize} \item (right-continuous) Sufficient to prove \[ F_X \left( x + \frac{1}{n} \right) \to F_X(x) \] as $n \to \infty$. \[ A_n = \left\{ x < X \le x + \frac{1}{n} \right\} \] \emph{decreasing events}, with \[ \bigcap_{n \ge 1} A_n = \emptyset \] so \[ \PP(A_n) = F_X \left( x + \frac{1}{n} \right) - F_X(x) \to 0 \] \item (left-limits) $F_X \left( x - \frac{1}{n} \right)$ is a sequence \emph{increasing} bounded above by $F_X(x)$. $\left\{X_n \le x - \frac{1}{n} \right\}$ is a \emph{increasing} sequence of events with \[ \bigcup_{n \ge 1} \left\{ X \le x - \frac{1}{n} \right\} = \{X < x\} \] so \[ F_X \left( x - \frac{1}{n} \right) = \PP \left( X \le x - \frac{1}{n} \right) \to \PP(X < x) \] \item ($\lim_{x \to \infty} F_X(x) = 1$) $\{X \le n\}$ increasing events, \[ \bigcup_{n \ge 1} \{X \le n\} = \Omega \] so \[ F_X(n) = \PP(X \le n) \to \PP(\Omega) = 1 \] \item Similar for $\lim_{x \to -\infty} F_X(x) = 0$. \end{itemize} \end{proof} \begin{definition*} \begin{itemize} \item A random variable is \emph{continuous} if $F$ is continuous. This implies that \begin{itemize} \item \eqnoskip \[ F_X(x) = F_X(x^-) \iff \PP(X \le x) = \PP(X < x) \iff \PP(X = x) = 0 \qquad \forall\,\, x \] \item and \emph{in this course} $F$ is also differentiable so that \[ F_X(x) = \PP(X \le x) = \int_{u = -\infty}^x f_X(u) \dd u \] (cf Part II P \& M) where $f_X : \RR \to \RR$ has the properties: \begin{itemize} \item $f_X(x) \ge 0$ for all $x$ \item $\int_{-\infty}^\infty f_X(x) \dd x = 1$ \end{itemize} $f_X$ is the \emph{probability density function} of $X$ (\emph{PDF} or ``\emph{density}''). \end{itemize} \end{itemize} \end{definition*} \noindent \ul{Intuitive Meaning}: \begin{center} \includegraphics[width=0.6\linewidth] {images/5b091a6ca2f711ec.png} \end{center} \[ \PP(x < X \le x + \delta x) = \int_x^{x + \delta x} f_X(u) \dd u \approx \delta x \cdot f(x) \] \[ \PP(a < X \le b) = \int_a^b f_X(x) \dd x = \PP(a \le X < b) \] So for $S \subset \RR$ ($S$ ``nice'' for example interval or countable union of intervals). \[ \PP(X \in S) = \int_S f_X(u) \dd u \] \subsubsection*{Key Takeaways} \begin{itemize} \item The CDF is a collection of probabilities \item PDF is \emph{not} a probability. How to use? Integrate it to get a probability. \end{itemize} \subsubsection*{Examples} \begin{enumerate}[(1)] \item Uniform distribution $X \sim U[a, b]$ ($a, b \in \RR$, $a < b$). \[ f_X(x) = \begin{cases} \frac{1}{b - a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases} \] \[ F_X(x) = \int_a^x f_X(u) \dd u \frac{x - a}{b - a} \] for $a \le x \le b$. \\ Question: ``Limit of discrete uniform random variables?'' \item Exponential distribution $\lambda > 0$. \[ X \sim \mathrm{Exp}(\lambda) \] \[ f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise} \end{cases} \] Check: \begin{enumerate}[(i)] \item $\ge 0$? Yes \item $\int_0^\infty f_X(x) = [-e^{-\lambda x}]_0^\infty = 1$. \end{enumerate} \[ F_X(x) = \PP(X \ge x) = \int_0^x \lambda e^{-\lambda u} \dd u = 1 - e^{-\lambda x} \] Remember: \[ \PP(X \ge x) = 1 - F_X(x) + \PP(X = x) = e^{-\lambda x} \] ``Limit of (rescaled) geometric distribution''. Good way to model \emph{arrival times} ``how long to wait before something happens'' $\to$ link to Poisson usage $\leftrightarrow$ Part II Applied Probability. \end{enumerate} \subsubsection*{Memoryless Probability} (Conditional $\PP$ works as before). $X \sim \mathrm{Exp}(\lambda)$, $s, t > 0$. \begin{align*} \PP(X \ge s + t \mid X \ge s) &= \frac{\PP(X \ge s + t)}{\PP(X \ge s)} \\ &= \frac{e^{-\lambda (s + t)}}{e^{-\lambda s}} \\ &= e^{-\lambda t} \\ &= \PP(X \ge t) \end{align*} Exercise: $X$ memoryless $\iff X \sim \mathrm{Exp}(\lambda)$. (continuous random variable with a density). \subsubsection*{Expectation of Continuous Random Variables} \begin{definition*} $X$ has density $f_X$. The \emph{expectation} is \[ \EE[X] := \int_{-\infty}^\infty xf_X(x) \dd x \] and \[ \EE[g(X)] := \int_{-\infty}^\infty g(x)f_X(x) \dd x \] \end{definition*} \noindent \ul{Technical Comment}: assumes at most one of \[ \int_{-\infty}^0 |x|f_X(x) \dd x \] and \[ \int_0^\infty xf_X(x) \dd x \] is infinite. \myskip \ul{Linearity of expectation}: \[ \EE[\lambda X + \mu Y] = \lambda \EE[X] + \mu \EE[Y] \] as before. \begin{claim*} $X \ge 0$. Then \[ \EE[X] = \int_0^\infty \PP(X \ge x) \dd x \] \end{claim*} \begin{proof} \begin{align*} \EE[X] &= \int_0^\infty x f_X(x) \dd x \\ &= \int_0^\infty \left( \int_0^x 1 \dd u \right) f_X(x) \dd x \\ &= \int_0^\infty \dd u \int_u^\infty \dd x f_X(x) \\ &= \int_0^\infty \dd u \PP(X \ge u) \end{align*} \end{proof}