% vim: tw=50 % 20/01/2022 - 11AM \setcounter{customexample}{-1} \begin{example} Dice: outcomes $1, 2, \dots, 6$. \begin{itemize} \item $\PP(2) = \frac{1}{6}$ \item $\PP(\text{multiple of 3}) = \frac{2}{6} = \frac{1}{3}$. \eqitem \begin{align*} \PP(\text{prime or a multiple of 3}) &\,\, \cancel{= \frac{1}{3} + \frac{1}{2} = \frac{5}{6}} \\ &= \frac{4}{6} = \frac{2}{3} \\ &= \frac{1}{3} + \frac{1}{2} - \PP(\text{prime \emph{and} a multiple of 3}) \\ &= \frac{1}{3} + \frac{1}{2} - \frac{1}{6} = \frac{2}{3} \end{align*} \item $\PP(\text{not a multiple of 3}) = \frac{2}{3}$. \end{itemize} \end{example} \section{Formal Setup} \begin{definition*} \begin{itemize} \item \emph{Sample space} $\Omega$, a set of \emph{outcomes}. \item $\mathcal{F}$ a collection of subsets of $\Omega$ (called \emph{events}). \item $\mathcal{F}$ is a \emph{$\sigma$-algebra} (``sigma-algebra'') if: \begin{enumerate}[F1] \item $\Omega \in \mathcal{F}$ \item if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ ($A^c := \Omega \setminus A$) \item $\forall$ countable collections $(A_n)_{n \ge 1}$ in $\mathcal{F}$ the union \[ \bigcup_{n \ge 1} A_n \in \mathcal{F} \] also. \end{enumerate} \end{itemize} \end{definition*} Given $\sigma$-algebra $\mathcal{F}$ on $\Omega$, function $\PP : \mathcal{F} \to [0, 1]$ is a \emph{probability measure} if \begin{enumerate}[P1] \item[P2] $\PP(\Omega) = 1$ \item[P3] $\forall$ countable collections $(A_n)_{n \ge 1}$ of disjoint events in $\mathcal{F}$: \[ \PP \left( \bigcup_{n \ge 1} A_n \right) = \sum_{n \ge 1} \PP(A_n) .\] \end{enumerate} (P1 was historically taken to state that $\PP(A) \ge 0$, but this is already captured by the notation $\PP : \mathcal{F} \to [0, 1]$). \bigskip \noindent Then $(\Omega, \mathcal{F}, \PP)$ is a \emph{probability space}. \subsubsection*{Revisiting dice example} For a dice we have: \[ \Omega = \{1, 2, \dots, 6\} \] \[ \PP(\text{1 or 2 or 3 or 4 or 5 or 6}) = 1 .\] \[ \mathcal{F} = \mathcal{P}(\Omega) \] \noindent \textbf{Question}: Why $\PP : \mathcal{F} \to [0, 1]$ not $\PP : \Omega \to [0, 1]$? \\ \ul{$\Omega$ finite / countable} \begin{itemize} \item In general: $\mathcal{F} = \text{all subsets of $\Omega$}$. ($\PP(\Omega)$). \item $\PP(2)$ is shorthand for $\PP(\{2\})$. \item $\PP$ is determined by ($\PP(\{\omega\}), \forall \,\,\omega \in \Omega$). (eg unfair dice) \end{itemize} \ul{$\Omega$ uncountable} \begin{itemize} \item For example $\Omega = [0, 1]$. Want to choose a real number, all equally likely. \item If $\PP(\{0\}) = \alpha > 0$, then \[ \PP \left( \left\{ 0, 1, \frac{1}{2}, \dots, \frac{1}{n} \right\} \right) = (n + 1) \alpha \] \contradiction if $n$ large as $\PP > 1$. \item So $\PP(\{0\}) = 0$, or $\PP(\{0\})$ is undefined. \item What about $\PP(\{x : x \le \frac{1}{3}\})$? \begin{itemize} \item ? ``Add up'' all $\PP(\{x\})$ for $x \le \frac{1}{3}$. \end{itemize} \end{itemize} \begin{example*} $\Omega = \{f : \text{continuous on $[0,1] \to \RR$, $f(0) = 1$}\}$. What is $\PP(\text{differentiable})$? \end{example*} \subsection{From the axioms} \begin{itemize} \item $\PP(A^c) = 1 - \PP(A)$. \begin{proof} $A$, $A^c$ are disjoint. $A \cup A^c = \Omega$ and hence \[ \PP(A) + \PP(A^c) \stackrel{P3}{=} \PP(\Omega) \stackrel{P2}{=} 1 \] \end{proof} \item $\PP(\emptyset) = 0$. \item If $A \subseteq B$ then $\PP(A) \le \PP(B)$. \item $\PP(A \cup B) = \PP(A) + \PP(B) - \PP(A \cap B)$. \end{itemize} \subsection{Examples of Probability Spaces} $\Omega$ finite, $\Omega = \{\omega_1, \dots, \omega_n\}$, $\mathcal{F} = \text{all subsets}$ uniform choice (equally likely). \[ \PP : \mathcal{F} \to [0, 1], \quad \PP(A) = \frac{|A|}{|\Omega|} .\] In particular: \[ \PP(\{\omega\}) = \frac{1}{|\Omega|} \,\, \forall \,\, \omega \in \Omega .\] \begin{example} Choosing without replacement $n$ indistinguishable marbles labelled $\{1, \dots, n\}$. Pick $k \le n$ marbles uniformly at random. Here: \[ \Omega = \{A \subseteq \{1, \dots, n\} : |A| = k\} \qquad |\Omega| = {n \choose k} \] \end{example} \begin{example} Well-shuffled deck of cards. Uniformly chosen \emph{permutation} of 52 cards. \[ \Omega = \{\text{all permutation of 52 cards}\} \qquad |\Omega| = 52! \] \[ \PP(\text{first three cards have the same suit}) = \frac{52 \times 12 \times 11 \times 49!}{52!} = \frac{22}{425} \] Note: $= \frac{12}{51} \times \frac{11}{50}$. \end{example}