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Start of
lecture 1 Example 0. Dice: outcomes 1, 2, . . . , 6.

• P(2) = 1
6

• P(multiple of 3) = 2
6 = 1

3 .

• P(prime or a multiple of 3) �������
=

1

3
+

1

2
=

5

6

=
4

6
=

2

3

=
1

3
+

1

2
− P(prime and a multiple of 3)

=
1

3
+

1

2
− 1

6
=

2

3

• P(not a multiple of 3) = 2
3 .

1 Formal Setup

Definition. • Sample space Ω, a set of outcomes.

• F a collection of subsets of Ω (called events).

• F is a σ-algebra (“sigma-algebra”) if:

F1 Ω ∈ F
F2 if A ∈ F then Ac ∈ F (Ac := Ω \A)

F3 ∀ countable collections (An)n≥1 in F the union⋃
n≥1

An ∈ F

also.

Given σ-algebra F on Ω, function P : F → [0, 1] is a probability measure if

P2 P(Ω) = 1

P3 ∀ countable collections (An)n≥1 of disjoint events in F :

P

⋃
n≥1

An

 =
∑
n≥1

P(An).

(P1 was historically taken to state that P(A) ≥ 0, but this is already captured by the
notation P : F → [0, 1]).
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Then (Ω,F ,P) is a probability space.

Revisiting dice example

For a dice we have:
Ω = {1, 2, . . . , 6}

P(1 or 2 or 3 or 4 or 5 or 6) = 1.

F = P(Ω)
Question: Why P : F → [0, 1] not P : Ω→ [0, 1]?
Ω finite / countable

• In general: F = all subsets of Ω. (P(Ω)).

• P(2) is shorthand for P({2}).

• P is determined by (P({ω}), ∀ ω ∈ Ω). (eg unfair dice)

Ω uncountable

• For example Ω = [0, 1]. Want to choose a real number, all equally likely.

• If P({0}) = α > 0, then

P
({

0, 1,
1

2
, . . . ,

1

n

})
= (n+ 1)α

×××× if n large as P > 1.

• So P({0}) = 0, or P({0}) is undefined.

• What about P({x : x ≤ 1
3})?

– ? “Add up” all P({x}) for x ≤ 1
3 .

Example. Ω = {f : continuous on [0, 1]→ R, f(0) = 1}. What is P(differentiable)?

1.1 From the axioms

• P(Ac) = 1− P(A). Proof. A, Ac are disjoint. A ∪Ac = Ω and hence

P(A) + P(Ac)
P3
= P(Ω) P2

= 1

• P(∅) = 0.

• If A ⊆ B then P(A) ≤ P(B).

• P(A ∪B) = P(A) + P(B)− P(A ∩B).
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1.2 Examples of Probability Spaces

Ω finite, Ω = {ω1, . . . , ωn}, F = all subsets uniform choice (equally likely).

P : F → [0, 1], P(A) =
|A|
|Ω|

.

In particular:

P({ω}) = 1

|Ω|
∀ ω ∈ Ω.

Example 1. Choosing without replacement n indistinguishable marbles labelled
{1, . . . , n}. Pick k ≤ n marbles uniformly at random. Here:

Ω = {A ⊆ {1, . . . , n} : |A| = k} |Ω| =
(
n

k

)

Example 2. Well-shuffled deck of cards. Uniformly chosen permutation of 52 cards.

Ω = {all permutation of 52 cards} |Ω| = 52!

P(first three cards have the same suit) =
52× 12× 11× 49!

52!
=

22

425

Note: = 12
51 ×

11
50 .

Start of
lecture 2
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Example 3 (Coincident Birthdays). n people. What is the probability that at least
two share a birthday?
Assumptions:

• No leap years! (365 days)

• All birthdays equally likely.

Now note that
Ω = {1, . . . , 365}n F = P(Ω)

A = {at least 2 people share a birthday}

Ac = {all n birthdays different}

P(Ac) =
|Ac|
|Ω|

=
365× 364× · · · × (365− n+ 1)

365n

so

P(A) = 1− 365× 364× · × (365− n+ 1)

365n{
n = 22 : P(A) ≈ 0.476

n = 23 : P(A) ≈ 0.507

n ≥ 366: P(A) = 1.

1.3 Choosing uniformly from infinite countable set

(For example Ω = N or Ω = Q ∩ [0, 1]) Suppose possible, then

• P({ω}) = α > 0 ∀ ω ∈ Ω. Then

P(Ω) =
∑
ω∈Ω

P({ω}) =
∑
ω∈Ω

α =∞ ××××

• P({ω}) = 0 ∀ ω ∈ Ω. Then

P(Ω) =
∑
ω∈Ω

P({ω}) =
∑
ω∈Ω

0 = 0 ××××

Note possible, but still, there exist lots of interesting probability measures of N!

1.4 Combinatorial Analysis

Subsets: Ω finite. |Ω| = n.
Question: How many ways to partition Ω into k disjoint subsets Ω1, . . . ,Ωk with |Ωi| = ni
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(with
∑k

i=1 ni = n)?

M =

(
n

1

)(
n− n1

n2

)(
n− n1 − n2

n3

)
· · ·
(
n− (n1 + · · ·+ nk−1

nk

)
=

n!

n1!�����(n− n1)!
× �����(n− n1)!

n2!(((((((
(n− n1 − n2)!

× · · · ×((((((((((((
[n− (n1 + · · ·+ nk−1)]!

nk!0!

=
n!

n1!n2! · · ·nk!

=:

(
n

n1, n2, . . . , nk

)
Key sanity check: Does ordering of subsets matter? For example, do we have[

Ω2 = {3, 4, 7},Ω3 = {1, 5, 8}
] different

=
[
Ω2 = {1, 5, 8},Ω3 = {3, 4, 7}

]
?

Yes!

Random Walks

Ω = {(X0, X1, . . . , Xn) : X0 = 0, |Xk −Xk−1| = 1, k = 1, . . . , n} |Ω| = 2n.

Could ask: P(Xn = 0)?

P(Xn = n) =
1

2n

P(Xn = 0) = 0 if n is odd

If n is even?
Idea - Choose n

2 ks for Xk = Xk−1 + 1 and the rest Xk = Xk−1 − 1. So

P(Xn = 0) = 2−n

(
n

n/2

)
=

n!

2n
[(

n
2

)
!
]2

Question: What happens when n is large?
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Stirling’s Formula

Notation. (an), (bn0 two sequences.

Say an ∼ bn as n → ∞ if an
bn
→ 1 as n → ∞. For example, n2 + 5n + 6

n ∼ n2.

Non-example: exp
(
n2 + 5n+ 6

n

)
̸∼ exp(n2).

Theorem (Stirling).
n! ∼

√
2πnn+1/2e−n

as n→∞.
Weaker version:

log(n!) ∼ n log n.

Start of
lecture 3

Proof (weaker version).

log(n!) = log 2 + log 3 + · · ·+ log n.

∫ n

1
log xdx︸ ︷︷ ︸

“Upper integral”

≤ log(n!) ≤
∫ n+1

1
log xdx︸ ︷︷ ︸

“Lower integral”

n log n− n = 1︸ ︷︷ ︸
∼n logn

≤ log(n!) ≤ (n+ 1) log(n+ 1)− n︸ ︷︷ ︸
∼n logn

Hence log(n!) ∼ n log n.
Key idea: Sandwiching between lower/upper integrals.
Useful:

• log x is increasing

• log x has nice integral!

7



(Ordered) Compositions

A composition of m with k parts is sequence (m1, . . . ,mk) of non-negative integers with

m1 + · · ·+mk = m.

For example, 3+0+1+2 = 6. Bijection between compositions and sequences of m stars
and k − 1 dividers (stars and bars). So number of compositions is

(
m+k−1

m

)
.

Comments: Q11 on example sheet 1.

Properties of Probability Measures

(Ω,F ,P)← Probability space

• P1:
P : F → [0, 1]

• P2: P(Ω) = 1.

• P3:

P

⋃
n≥1

An

 =
∑
n≥1

P(An)

(An)n≥1 disjoint. “Countable additivity”.

(1) Countable sub-additivity

(An)n≥1 sequence of events in F . Then

P

⋃
n≥1

An

 ≤∑
n≥1

P(An).

Intuition: this sum can “double count” some sub-events.
Proof. Idea: rewrite

⋃
n≥1An as a disjoint union. Define B1 = A1 and Bn = An \ (A1 ∪

· · · ∪An−1) for n ≥ 2 (which is in F by example sheet). So

•
⋃

n≥1Bn =
⋃

n≥1An

• (Bn)n≥1 disjoint (by construction)

• Bn ⊆ An =⇒ P(Bn) ≤ P(An) (by example sheet)

Hence

P

⋃
n≥1

An

 = P

⋃
n≥1

Bn

 =
∑
n≥1

P(Bn) ≤
∑
n≥1

P(An).
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(1) Continuity

(An)n≥1 is increasing sequence of events in F i.e. An ⊆ An+1. Then P(An) ≤ P(An+1).
So P(An) converges as n→∞. (Because bounded and increasing.) In fact, limn→∞ P(An) =

P
(⋃

n≥1An

)
.

Proof. Re-use the Bns!

•
⋃n

k=1Bk = An (disjoint union)

•
⋃

n≥1Bn =
⋃

n≥1An

P(An) =
n∑

k=1

P(Bk)→
∑
k≥1

P(Bk)

P

⋃
n≥1

An

 = P

⋃
n≥1

Bn

 =
∑
n≥1

P(Bn)

Try Q6.

(3) Inclusion-Exclusion Principle

Background: P(A ∪B) = P(A) + P(B)− P(A ∩B).
Similarly: for A,B,C ∈ F

P(A∪B ∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(B ∩C)−P(C ∩A)+P(A∩B ∩C).

Theorem (Inclusion Exclusion Principle). Let A1, A2, . . . , An ∈ F . Then:

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)−
∑

1≤i1<i2≤n

P(Ai1 ∩Ai2) +
∑

1≤i1<i2<i3≤n

P(Ai1 ∩Ai2 ∩Ai3)

− · · ·+ (−1)n+1P(A1 ∩ · · · ∩An)

Or, abbreviated:

P

(
n⋃

i=1

Ai

)
=

∑
I⊂{1,...,n}

I ̸=∅

(−1)|I|+1P

(⋂
i∈I

Ai

)

Start of
lecture 4
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Proof. Use induction n−1 7→ n. For n = 2, check Example Sheet 1, Q4(e). For the
inductive step:

P

(
n⋃

i=1

Ai

)
= P

((
n−1⋃
i=1

Ai

)
∪An

)

= P

(
n−1⋃
i=1

Ai

)
+ P(An)− P

((
n−1⋃
i=1

Ai

)
∩An

)
Idea: (

n−1⋃
i=1

Ai

)
∩An =

n−1⋃
i=1

(Ai ∩An)

=⇒
⋂
i∈J

(Ai ∩An) =
⋂

i∈J∪{n}

Ai

(J ⊂ {1, . . . , n− 1}).

P

(
n⋃

i=1

Ai

)
=

∑
J⊂{1,...,n−1}

J ̸=∅

(−1)|J |+1P

(⋂
i∈J

Ai

)
+ P(An)−

∑
J⊂{1,...,n−1}

J ̸=∅

(−1)|J |+1P

 ⋂
i∈J∪{n}

Ai


=

∑
I⊂{1,...,n−1}

I ̸=∅

(−1)|I|+1P

(⋂
i∈I

Ai

)
+ P(An) +

∑
I⊂{1,...,n}
n∈I,|I|≥2

(−1)|I|+1P

(⋂
i∈I

Ai

)

=
∑

I⊂{1,...,n}
I ̸=∅

(−1)|I|+1P

(⋂
i∈I

Ai

)

Where J ∪ {n} 7→ I, so −(−1)|J |+1 7→ (−1)|I|.

Bonferroni Inequalities

Question: What if you truncate Inclusion-Exclusion Principle?
Recall: P(∪Ai) ≤

∑
P(Ai) (union bound).

• When r is even:

P

(
n⋃

i=1

Ai

)
≤

r∑
k=1

(−1)k+1
∑

i1<···<ik

P(Ai1 ∩ · · · ∩Aik)

• When r is odd:

P

(
n⋃

i=1

Ai

)
≥

r∑
k=1

(−1)k+1
∑

i1<···<ik

P(Ai1 ∩ · · · ∩Aik)
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Question: When is it good to truncate at for example r = 2?
Proof. Induction on r and n. For r odd:

P

(
n⋃

i=1

Ai

)
= P

(
n−1⋃
i=1

Ai

)
+ P(An)− P

(
n−1⋃
i=1

(Ai ∩An)

)

≤
∑

J⊂{1,...,n−1}
I≤|J |≤r

(−1)|J |+1P

(⋂
i∈J

Ai

)
+ P(An)−

∑
J⊂{1,...,n−1}
1≤|J |≤r−1

(−1)|J |+1P

 ⋂
i∈J∪{n}

Ai



≤
∑

I⊂{1,...,n}
1≤|I|≤r

(−1)|I|+1P

(⋂
i∈I

Ai

)

r even is similar.

Counting with Inclusion-Exclusion Principle

Uniform probability measure on Ω, |Ω| <∞.

P(A) =
|A|
|Ω|
∀ A ⊆ Ω.

Then ∀ A1, . . . , An ⊆ Ω.

|A1 ∪ · · · ∪An| =
n∑

k=1

(−1)k+1
∑

i1<···<ik

|Ai1 ∩ · · · ∩Aik |

(and similar for Bonferroni Inequalities).
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Example 1. Surjections f : {1, . . . , n} → {1, . . . , n}

Ω = {f : {1, . . . , n} → {1, . . . ,m}} all functions

A = {f : Im(f) = {1, . . . ,m}} all surjections

∀ i ∈ {1, . . . ,m}. Define
Bi = {f ∈ Ω : i ̸∈ Im(f)}.

Key observations:

• A = Bc
1 ∩ · · · ∩Bc

m = (B1 ∪ · · · ∪Bm)c.

• |Bi1 ∩ · · · ∩Bik | is nice to calculate! In particular, it is

|{f ∈ Ω : i1, . . . , ik ̸∈ Im(f)}| = (m− k)n.

Inclusion-Exclusion Principle implies:

|B1 ∪ · · · ∪Bm| =
m∑
k=1

(−1)k+1
∑

i1<···<ik

|Bi1 ∩ · · · ∩Bik |

=

m∑
k=1

(−1)k+1

(
m

k

)
(m− k)n

|A| = mn − previous expression

=
m∑
k=0

(−1)k
(
m

k

)
(m− k)n

Start of
lecture 5
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Example 2. Derangements (Permutation with no fixed points)

Ω = {permutations of {1, . . . , n}}

D = {σ ∈ Ω : σ(i) ̸= i ∀ i = 1, . . . , n}

Question: Is P(D) = |D|
|Ω| large or small (when n→∞)?

∀ i ∈ {1, . . . , n} : Ai = {σ ∈ Ω : σ(i) = i}.

• D = Ac
1 ∩ · · · ∩Ac

n = (
⋃n

i=1Ai)
c.

• P(Ai1 ∩ · · · ∩Aik) =
(n−k)!

n!

Now Inclusion-Exclusion Principle implies:

P

(
n⋃

i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

i1<···ik

P(Ai1 ∩ · · · ∩Aik)

=

n∑
k=1

(−1)k+1

(
n

k

)
(n− k)!

n!

So

P(D) = 1− P

(
n⋃

i=1

Ai

)

= 1−
n∑

k=1

(−1)k+1

k!

=

n∑
k=1

(−1)k

k!

And as n→∞,

P(D)→
∞∑
k=0

(−1)k

k!
= e−1 ≈ 0.37

Comments

What if instead we have

Ω′ = {f : {1, . . . , n} → {1, . . . , n}}.

D = {f ∈ Ω′ : f(i) ̸= i ∀ i = 1, . . . , n}.
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Then

P(D) =
(n− 1)n

nn
=

(
1− 1

n

)n

which also approaches e−1 as n→∞.

• Would be nice to write as a product of probabilities, i.e.
(
n−1
n

)n
, and we will be

allowed to do this soon.

• f(i) is a random quantity associated to Ω. (Will be allowed to study f(i) as a
random variable.)

• Are allowed to toss a fair coin n times.

Ω = {H,T}n

Independence

(Ω,F ,P) as before.

Definition. • Events A,B ∈ F are independent if

P(A ∩B) = P(A)P(B)

(denoted A ⊥⊥ B).

• A countable collection of events (An) is independent if ∀ distinct i1, . . . , ik we
have:

P(Ai1 ∩ · · · ∩Aik) =

k∏
j=1

P(Aij ).

Note. “Pairwise independence” does not imply independence.
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Example. Ω = {(H,H), (H,T ), (T,H), (T, T )}, P({ω}) = 1
4 ∀ ω ∈ Ω. Now define

A = first coin in H = {(H,H), (H,T )}

B = second coin H = {(H,H), (T,H)}

C = same outcome = {(H,H), (T, T )}.

Then we have that

P(A) = P(B) = P(C) =
1

2
A ∩B = A ∩ C = B ∩ C = {(H,H)}

=⇒ P(A ∩B) = P(A ∩ C) = P(B ∩ C) =
1

4

so pairwise independent, however

P(A ∩B ∩ C) =
1

4
̸= P(A)P(B)P(C)

so the events are not independent.

Example(s) of Independence

• Define
Ω′ = {f : {1, . . . , n} → {1, . . . , n}}.

Ai := {f ∈ Ω′ : f(i) = i}.

P(Ai) =
nn−1

nn
=

1

n

P(Ai1 ∩ · · · ∩Aik) =
nn−k

nn
=

1

nk
=

k∏
j=1

P(Aij )

Here: (Ai) independent events.

• Define
Ω = {σ : permutation of{1, . . . , n}}

Ai = {σ ∈ Ω : σ(i) = i}

For i ̸= j,

P(Ai ∩Aj) =
(n− 2)!

n!
=

1

n(n− 1)
̸= P(Ai)P(Aj)

So here, (Ai) are not independent.
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Properties

Claim 1. If A is independent of B, then A is also independent of Bc.

Proof.

P(A ∩Bc) + P(A)− P(A ∩B)

= P(A)− P(A)P(B)

= P(A)[1− P(B)]

= P(A)P(Bc)

Claim 2. A is independent of B = Ω and of C = ϕ.

Proof.
P(A ∩ Ω) = P(A) = P(A)P(Ω).

And by claim 1, this implies that A ⊥⊥ ∅.

As an exercise, one can further prove that if P(B) = 0 or 1, then A is independent of B.

Conditional Probability

(Ω,F ,P) as before.

Consider B ∈ F with P(B) > 0, A ∈ F .

Definition. The conditional probability of A given B is

P (A | B) :=
P(A ∩B)

P(B)

“The probability of A if we know B happened”. (for example revealing info in
succession).

Example. If A, B independent,

P(A | B) =
P(A ∩B)

P(B)
=

P(A)P(B)

P(B)
= P(A).

“Knowing whether B happened doesn’t affect the probability of A.”

Start of
lecture 6
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Properties

• P(A | B) ≥ 0

• P(B | B) = P(Ω | B) = 1.

• (An) disjoint events ∈ F .

Claim. P
(⋃

n≥1An | B
)
=
∑

n≥1 P(An | B).

Proof.

P

⋃
n≥1

An | B

 =
P
((⋃

n≥1An

)
∩B

)
P(B)

=
P
(⋃

n≥1 (An ∩B)
)

P(B)

=

∑
n≥1 P(An ∩B)

P(B)

=
∑
n≥1

P(A | B)

P(• | B) is a function from F → [0, 1] that satisfies the rules to be a probability measure
Ω. Consider Ω′ = B (especially in finite / countable setting), F ′ = P(B). Then
(Ω′,F ′,P(• | B)) also satisfies the rules to be a probability measure on Ω′.

P(A ∩B) = P(A)P(B | A)

P(A1 ∩A2 ∩ · · · ∩An) = P(A1)P(A2 | A1)P(A3 | A1 ∩A2) · · ·P(An | A1 ∩ · · · ∩An−1).
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Example. Uniform permutation (σ(1), σ(2), . . . , σ(n)) ∈
∑

n.

Claim.

P(σ(k) = ik | σ(i) = i, . . . , σ(k − 1) = ik−1) =

{
0 if ik ∈ {i1, . . . , ik−1}

1
n−k+1 if ik ̸∈ {i1, . . . , ik−1}

Proof.

P(σ(k) = ik | σ(i) = i, . . . , σ(k − 1) = ik−1) =
P(σ(i) = i, . . . , σ(k) = ik)

P(σ(i) = i1, . . . , σ(k − 1) = ik−1)

=
0 or (n−k)!

n!
(n−k+1)!

n!

=
(n− k)!

(n− k + 1)!

=
1

n− k + 1

Law of Total Probability and Bayes’ Formula

Definition. (B1, B2, . . . ) ⊂ Ω is a partition of Ω if:

• Ω =
⋃

n≥1Bn

• (Bn) are disjoint

Theorem. (Bn) a finite countable partition of Ω with Bn ∈ F and for all n P(Bn) >
0, then for all A ∈ F :

P(A) =
∑
n≥1

P(A | Bn)P(Bn).

(Sometimes known as “Partition Theorem”).

Proof. Note that
⋃

n≥1(A ∩Bn) = A.

P(A) =
∑
n≥1

P(A ∩Bn) =
∑
n≥1

P(A | Bn)P(Bn).
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Theorem (Bayes’ Formula).

P(Bn | A) =
P(A ∩Bn)

P(A)
=

P(A | Bn)P(Bn)∑
m≥1 P(A | Bm)P(Bm)

.

Rephrasing for n = 2:

P(B | A)P(A) = P(A | B)P(B) = P(A ∩B).

This allows us for example to calculate P(B | A) given P(A), P(A | B) and P(B).

Example 1. Lecture course: 2
3 probability that it is a weekday, and 1

3 probability
that it is a weekend.

P(forget notes | weekday) = 1

8

P(forget notes | weekend) = 1

2
.

What is P(weekend | forget notes)?

B1 = {weekend}, B2 = {weekend}, A− {forget notes}.

Law of Total Probability:

P(=
2

3
× 1

8
+

1

3
× 1

2
=

1

12
+

1

6
=

1

4
.

Bayes’:

P(B2 | A) =
1
3 ×

1
2

1
4

=
2

3
.
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Example 2. Disease testing: probability p that you are infected, probability 1− p
that you are not.

P(tests positive | infected) = 1− α

P(test positive | not infected) = β

Ideally both α, β are small (and ideally p is small).

P(infected | test positive).

Law of Total Probability:

P(test positive) = p(1− α) + (1− p)β.

Bayes’:

P(infected | positive) = p(1− α)

p(1− α) + (1− p)β
.

Suppose p≪ β. Then
p(1− α)≪ (1− p)β

Then

P(infected | positive) ∼ p(1− α)

(1− p)β

Start of
lecture 7 Example 3 (Simpson’s Paradox).

A = {change colour}, B = {blue} Bc = {green}

C = {Cambridge} Cc = {Oxford}

P(A | B ∩ C) > P(A | Bc ∩ C)

P(A ∩B ∩ Cc) > P(A | Bc ∩ Cc)

���=⇒ P(A | B) > P(A | Bc)
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Law of Total Probability for Conditional Probabilities

Suppose C1, C2, . . . a partition of B.

P(A | B) =
P(A ∩B)

P(B)

=
P (A ∩ (

⋃
nCn))

P(B)

=
P (
⋃

n (A ∩ Cn))

P(B)

=

∑
n P(A ∩ Cn)

P(B)

=

∑
n P(A | Cn)P(Cn)

P(B)

=
∑
n

P(A | CN )
P(B ∩ Cn)

P(B)

=
∑
n

P(A | Cn)
P(Cn)

P(B)

Conclusion:
P(A | B) =

∑
n

P(A | Cn)P(Cn | B)

Special case:

• If all P(Cn) are equal, then all P(Cn | B) are equal too.

• If P(A | Cn)s all equal, then P(A | B) = P(A | Cn) also.
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Example. Uniform permutation (σ(1), . . . , σ(52)) ∈
∑

52 (“well-shuffled cards”).
{1, 2, 3, 4} are aces. What is P({σ(1), σ(2) both aces})?

A = {σ(1), σ(2) aces}, B = {σ(1) is ace} = {σ(1) ≤ 4}

C1 = {σ(1) = 1}, . . . , C4 = {σ(1) = 4}

Note. • P(A | Ci) = P(σ(2) ∈ {1, 2, 3, 4} | σ(1) = i) i ≤ 4

=
3

51

• P(C1) = · · · = P(C4) =
1
52

So conclude:

P(A | B) =
3

51

P(A) = P(B)× P(A | B) =
4

52
× 3

51
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2 Discrete Random Variables

Motivation: Roll two dice.

Ω = {1, . . . , 6}2 = {(i, j) : 1 ≤ i, j ≤ 6}

Restrict attention to first dice, for example {(i, j) : i = 3}, or sum of dice values for
example {(i, j) : i+ j = 8}, or max of dice, for example {(i, j) : i, j ≤ 4, i or j = 4}.
Goal: “Random real-valued measurements”.

Definition. A discrete random variable X on a probability space (Ω,F ,P) is a
function X : Ω→ R such that

• {ω ∈ Ω : X(ω) = x} ∈ F

• Im(X) is finite or countable (subset of R)

If Ω finite or countable and F = P(Ω) then both bullet points hold automatically.

Example (Part II Applied Probability).

Ω = {countable subsets (a1, a2, . . . ) of (0,∞)}

Nt = number of arrivals by time t

= |{ai : ai ≤ t}| ∈ {0, 1, 2, . . . }

is a discrete random variable for each time t.
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Definition. The probability mass function of discrete random variable X is the
function pX : R→ [0, 1] given by

pX(x) = P(X = x) ∀ x ∈ R

Note. • if x ̸∈ Im(X) then

pX(x) = P({ω ∈ Ω : X(ω) = x}) = P(∅) = 0

•
∑

x∈Im(X)

PX(x) =
∑

x∈Im(X)

P({ω ∈ Ω : X(ω) = x})

= P

 ⋃
x∈Im(x)

{ω ∈ Ω : X(ω) = x}


= P(Ω)
= 1

Example. Event A ∈ F , define 1A : Ω→ R by

1A(ω) =

{
1 if ω ∈ A

0 if ω ̸∈ A

(“Indicator function of A”) 1A is a discrete random variable with Im = {0, 1}.
Probability mass function:

P1A(1) = P(1A = 1) = P(A)

P1A(0) = P(1A = 0) = 1− P(A)

P1A(x) = 0 ∀x ̸∈ {0, 1}.

This encodes “did A happen?” as a real number.
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Remark. Given a probability mass function pX , we can always construct a proba-
bility space (Ω,F ,P) and a random variable defined on it with this probability mass
function.

• Ω = Im(X) i.e. {x ∈ R : pX(x) > 0}.

• F = P(Ω)

• P({x}) = pX(x) and extend to all A ∈ F .

Start of
lecture 8 Discrete Probability Distributions

Ω finite.

1. Bernoulli Distribution

(“(biased) coin toss”).
X ∼ Bern(p), p ∈ [0, 1].

Im(x) = {0, 1}

pX(1) = P(X = 1) = p

pX(0) = P(X = 0) = 1− p.

Key example: 1A ∼ Bern(p) with p = P(A).

2. Binomial Distribution

X ∼ Bin(n, p), n ∈ Z+, p ∈ [0, 1].
(‘Toss coin n times, count number of heads”.)

Im(X) = {0, 1, . . . , n}

pX(k) = P(X = k) =

(
n

k

)
pk(1− p)n−k

check:
n∑

k=0

pX(k) = (p+ (1− p))n = 1

More than one Random Variable

Motivation: Doll a dice. Outcome X ∈ {1, 2, . . . , 6}. Events:

A = {1 or 2}, B = {1 or 2 or 3}, C = {1 or 3 or 5}.

1A ∼ Bern

(
1

3

)
, 1B ∼ Bern

(
1

2

)
, 1C ∼ Bern

(
1

2

)
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Note. 1A ≤ 1B for all outcomes, but 1A ≤ 1C for outcomes is false.

Definition. X1, . . . , Xn discrete random variables. Say X1, . . . , Xn are independent
if

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · ·P(Xn = xn) ∀ x1, . . . , xn ∈ R

(suffices to check ∀ xi ∈ Im(Xi)).

Example. X1, . . . , Xn independent random variables each with the Bernoulli(p)
distribution. Study Sn = X1 + · · ·+Xn. Then

P(Sn = k) =
∑

X1+···Xn=k
Xi∈{0,1}

P(X1 = x1, . . . , Xn = xn)

=
∑

X1+···+Xn=k

P(X1 = x1) · · ·P(Xn = xn)

=
∑

X1+···+Xn=k

p|{i:xi=1}|(1− p)|{i:xi=0}|

=
∑

X1+···+Xn=k

pk(1− p)n−k

=

(
n

k

)
pk(1− p)n−k

so Sn ∼ Bin(n, k).

Example (Non-example). (σ(1), σ(2), . . . , σ(n)) uniform in
∑

n.

Claim. σ(1) and σ(2) are not independent.

Suffices to find i1, i2 such that

P(σ(1) = i, σ(2) = i2) ̸= P(σ(1) = i1)P(σ(2) = i2)

for example

P(σ(1) = 1, σ(2) = 1) = 0 ̸= 1

n
× 1

n
= P(σ(1) = 1)P(σ(2) = 1)

Consequence of definition
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X1, . . . , Xn independent then ∀ A1, . . . , An ⊂ R countable, then

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An)

Ω = N

“Ways of choosing a random integer”

3. Geometric distribution

(“waiting for success”)
X ∼ Geom(p), p ∈ (0, 1].
(“Toss a coin with P(heads) = p until a head appears. Count how many trials were
needed.”)

Im(X) = {1, 2, . . . }

pX(k) = P((k − 1) failures, then success on k-th) = (1− p)k−1p

Check: ∑
k≥1

(1− p)k−1p = p
∑
l≥0

(1− p)l =
p

1− (1− p)
= 1

Note. We could alternatively “count how many failures before a success”.

Im(Y ) = {0, 1, 2, . . . }

pY (k) = P(k failures, then success on (k + 1)-th) = (1− p)kp

Check: ∑
k≥0

(1− p)kp = 1

4. Poisson Distribution

λ ∈ (0,∞).
X ∼ Po(λ)

Im(X) = {0, 1, 2, . . . }

P(X = k) = e−λλ
k

k!
∀ k ≥ 0
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Note. ∑
k≥0

P(X = k) = e−k
∑
k≥0

λk

k!
= e−λeλ = 1

Motivation: Consider Xn ∼ Bin
(
n, λn

)
. .image

• Probability of an arrival in each interval is p, independently across intervals.

• Total arrivals is Xn.

P(Xn = k) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

Fix k, let n→∞:

P(Xn = k) =
n!

nk(n− k)!︸ ︷︷ ︸
→1

×λk

k!
×
(
1− λ

n

)n

︸ ︷︷ ︸
→e−λ

×
(
1− 1

n

)−k

︸ ︷︷ ︸
→1

so

P(Xn = k)→ e−λλ
k

k!

Start of
lecture 9

“Bin
(
n, λn

)
converges to Po(λ)”. (note the “converges” is not very meaningful).

Expectation

(Ω,F ,P) and X a discrete random variable. For now: X only takes non-negative values.
“X ≥ 0”

Definition. The expectation of X (or expected value of mean) is

E[X] =
∑

x∈Im(X)

xP(X = x) =
∑
ω∈Ω

X(ω)P({ω})

“average of values taken by X, weighted by pX”.

Example 1. X uniform on {1, 2, . . . , 6} (i.e. dice) then

E[X] =
1

6
× 1 +

1

6
× 2 + · · ·+ 1

6
× 6 = 3.5

Note. E[X] ̸∈ Im(X).
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Example 2. X ∼ Binomial(n, p).

E[X] =
n∑

k=0

kP(X = k) =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

Trick:

k

(
n

k

)
=

k × n!

k!× (n− k)!

=
n!

(k − 1)!(n− k)!

=
n× (n− 1)!

(k − 1)!× (n− k)!

= n

(
n− 1

k − 1

)
E[X] = n

n∑
k=1

(
n− 1

k − 1

)
pk(1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

= np

n−1∑
l=0

(
n− 1

l

)
pl(1− p)(n−1)−l

= np(p+ (1− p))n−1

= np

Note. Would like to say:

E[Bin(n, p)] = E[Bern(p)] + · · ·+ E[Bern(p)]
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Example 3. X ∼ Poisson(λ).

E[X] =
∑
k≥0

kP(X = k)

=
∑
k≥0

k · e−λλ
k

k!

=
∑
k≥1

e−λ λk

(k − 1)!

= λ
∑
k≥0

e−λ λk−1

(k − 1)!

= λ
∑
l≥0

e−λλ
l

l!

= λ

Note. Would like to say

E[Poisson(λ)] ≈ E
[
Bin

(
n,

λ

n

)]
= λ

Can’t say this: not true in general that

P(Xn = k) ≈ P(λ = k) =⇒ E[Xn] ≈ E[X]

Example 4. X ∼ Geometric(p). Exercise.

Positive and negative: General X (not necessarily X ≥ 0).

E[X] =
∑

x∈Im(X)

xP(X = x)

unless ∑
x>0

x∈Im(x)

xP(X = x) = +∞

and ∑
x<0

x∈Im(x)

xP(X = x) = −∞

then we say that E[X] is not defined.
Summary:
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• both infinite: not defined

• first infinite, second not: E[X] = +∞

• second infinite, first not: E[X] = −∞

• neither infinite: X is integrable, i.e.∑
x∈Im(X)

|x|P(X = x)

converges.

Note that some people say that in cases 2 and 3, the expectation is undefined.

Example 5. Most examples in the course are integrable except :

• P(X = n) = 6
π2 × 1

n2 for n ≥ 1. (Note
∑

P(X = n) = 1). Then

E[X] =
∑ 6

π2
× 1

n
= +∞

• P(X = n) = 3
π2 × 1

n2 for n ∈ Z\{0}, then E[X] is not defined. (“It’s symmetric
so E[X] = 0” is considered wrong for us).

Example. E[1A = P(A) Important!

Properties of Expectation

(X discrete).

(1) If X ≥ 0, then E[X] ≥ 0 with equality if and only P(X = 0) = 1. Why?

E[X] =
∑

x∈Im(X)
x ̸=0

xP(X = x)

(2) If λ, c ∈ R then:

(i) E[X + c] = E[X] + c

(ii) E[λX] = λE[X]

(3) (i) X, Y random variables (both integrable) on same probability space.

E[X + Y ] = E[X] + E[Y ]
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(ii) In fact λ, µ ∈ R
E[λX + µY ] = λE[X] + µE[Y ]

similarly:
E[λ1X1 + · · ·+ λnXn] = λ1E[X1] + · · ·+ λnE[Xn]

Proof of (3)(ii).

E[λX + µY ] =
∑
ω∈Ω

(λX(ω) + µY (ω))P({ω})

= λ
∑
ω∈Ω

X(ω)P({ω}) + µ
∑
ω∈Ω

Y (ω)P({ω})

= λE[X] + µE[Y ]

Note that this proof only works for countable Ω, but there is also a proof for general Ω.

Note. Independence is not required for linearity of expectation to hold. (This is
the name for property (3)(ii)).

Start of
lecture 10 Corollary. X ≥ Y (meaning X(ω) ≥ Y (ω) for all ω ∈ R) then E[X] ≥ E[Y ].

Proof. X = (X − Y ) + Y hence

E[X] = E[X − Y ] + E[Y ]

but X − Y ≥ 0 hence E[X − Y ] ≥ 0.
Key Application: Counting problems.
(σ(1), . . . , σ(n)) uniform on σn.

Z = |{i : σ(i) = i}| = number of fixed points

Let Ai = {σ(i) = i}. (Recall Ais are not independent)
Key step:

Z = 1A1 + · · ·+ 1An

so

E[Z] = E[1A1 + · · ·+ 1An ]

= E[1A1 ] + · · ·+ E[1An ]

= P(A1) + · · ·P(An)

=
1

n
× n

= 1
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Note. Same answer as Bin
(
n, 1

n

)
.

Application: X takes values in {0, 1, 2, . . . }.
Fact: E[X] =

∑
k≥1 P(X ≥ k). Proof 1. Write

X =
∑
k≥1

1(X≥k)

Then

E[X] = E
[∑

1(X≥k)

]
=
∑

E[1(X≥k)]

=
∑

P(X ≥ k)

Sanity Check: for example if X = 7 then

1(X≥1) = · · · = 1(X≥7) = 1

1(X≥8) = 1(X≥9) = · · · = 0

Markov’s Inequality

X ≥ 0 a random variable. Then ∀ a > 0:

P(X ≥ a) ≤ E[X]

a

Comment:
Is a = E[X]

2 useful? Definitely not.
Is a is large useful? Maybe.
Proof. Observe: X ≥ a1(X≥a). Then

E[X] ≥ aE[1X≥a] = aP(X ≥ a)

now just rearrange.

Note that 1(X≥a) means X(ω) ≥ a1(X≥a)(ω).
Check: if X ∈ [0, a) then RHS = 0, if X ∈ [a,∞) then RHS = a.

Note. Also true for continuous random variables (later).
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Studying E[f(X)]

Let f : R→ R be a function. Then f(X) is also a random variable.

Claim. E[f(X)] =
∑

x∈Im(X) f(x)P(X = x).

Proof. Let

A = Im(f(X)) = {y : y = f(x), x ∈ Im(X)} = {f(x) : x ∈ Im(X)}

Start with RHS: ∑
x∈Im(X)

f(x)P(X = x) =
∑
y∈A

∑
x∈Im(X)
f(x)=y

f(x)P(X = x)

∑
y∈A

y
∑

x∈Im(X)
f(x)=y

P(X = x)

=
∑
y∈A

yP(f(X) = y)

= E[f(X)]

Motivation

Un ∼ Uniform({−n,−n+ 1, . . . , n})

Vn ∼ Univorm({−n,+n})

Zn = 0

Sn = random walk for n steps ∼ n− 2Bin

(
n,

1

2

)
All of these have E = 0.

Variance

“Measure how concentrated a random variable is around its mean”.

Definition. The variance of X is:

Var(X) = E[(X − E[X])2]
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Property:
Var(X) ≥ 0

with equality ⇐⇒ P(X = E[X]) = 1.

Alternative Characterisation:

Var(X) = E[X2]− (E[X])2

Proof. Write µ = E[X]. Then

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

= E[X2]− 2µE[X]︸ ︷︷ ︸
µ

+µ2

= E[X2]− µ2

Properties

If λ, c ∈ R:

• Var(λX) = λ2Var(X)

• Var(X + c) = Var(X).

Proof. E[X + c] = µ+ c

Var(X + c) = E[(X + c− (µ+ c))2]

= E[(X − µ)2]

= Var(X)

Start of
lecture 11
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Example 1. X ∼ Poisson(λ), E[X] = λ.

Var(x) = E[X2]− λ2

“Falling factorial trick”: sometimes E[X(X − 1)] is easier than E[X2]. Here:

E[X(X − 1)] =
∑
k≥2

k(k − 1)e−λλ
k

k!

= λ2e−λ
∑
k≥2

λk−2

(k − 2)!

= λ2

E[X2] = E[X(X − 1) +X]

= E[X(X − 1)] + E[X]

= λ2 + λ

=⇒ Var(x) = λ

Example 2. Y ∼ Geom(p) ∈ {1, 2, 3, . . . }. E[Y ] = 1
p . Var(y) = · · · = 1−p

p2
. (left as

an exercise)

Note. λ large: Var(X) = E[X].
p small (so Y large): Var(Y ) ≈ 1

p2
= (E[X])2.

Example 3. X ∼ Bern(p). E[X] = 1× p = p. E[X2] = 12 × p = p.

Var(X) = p− p2 = p(1− p)

Example 4. X ∼ Bin(n, p), E[X] = np.

E[X2] = ugly. . .

Goal: Study Var(X1 + · · ·+Xn) for not independent.

Preliminary: E[Products of RVs]. Setting: X, Y independent random variables and f ,
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f functions R→ R. Then:

E[f(X)g(Y )] = E[f(X)]E[g(Y )]

“splits as a product”
Key example 1: f, g : f(x) = g(x) = x. Then E[XY ] = E[X]E[Y ].
Key example 2: f(x) = g(x) = zx (or etx).
Proof.

LHS =
∑

x,y∈Im
f(x)g(y)P(X = x, Y = y)

=
∑

x,y∈Im
f(x)g(y)P(X = x)P(Y = y)

=

[ ∑
x∈Im X

f(x)P(X = x)

] ∑
y∈Im Y

g(y)P(Y = y)


= E[f(X)]E[g(Y )]

Sums of Independent Random Variables

X1, . . . , Xn independent. Then

Var(X1 + · · ·Xn) = Var(X1) + · · ·Var(Xn)

Proof. (Suffices to prove n = 2 by induction). Say E[X] = µ, E[Y ] = ν. Then E[X+Y ] =
µ+ ν.

Var(X + Y ) = E[(X + Y − µ− ν)2]

= E[(X − µ)2] + E[(Y − µ)2] + 2E[(X − µ)(Y − ν)]

= Var(X) + Var(Y ) + E[X − µ]E[Y − ν]

Var(X) + Var(Y )

Example 4. Var(Bin(n, p)) = np(1− p).

Goal: Study Var(X + Y ) when X, Y are not independent.

Definition. X, Y two random variables. Their covariance is

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

“Measures how dependent X, Y are, and in which direction”: If Cov > 0 then X
bigger means Y bigger, and if Cov < 0 then X bigger means Y smaller.
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Properties

• Cov(X,Y ) = Cov(Y,X)

• Cov(X,X) = Var(X).

• Alternative characterisation:

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

(often more useful, and particularly nice if E[X] = 0) Proof.

Cov(X,Y ) = E[(X − µ)(Y − ν)]

E[XY ]− µE[Y ]︸︷︷︸
ν

−ν E[X]︸ ︷︷ ︸
µ

+µν

= E[XY ]− µν

• c, λ ∈ R:
– Cov(c,X) = 0

– Cov(X + c, Y ) = Cov(X,Y )

– Cov(λX, λY ) = λ2Cov(X,Y )

• Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

• Covariance is linear in each argument, i.e.

Cov
(∑

λiXi, Y
)
=
∑

λiCov(Xi, Y )

and (applying in two stages)

Cov
(∑

λiXi,
∑

µjYj

)
=

n∑
i=1

n∑
j=1

λiµjCov(Xi, Yj)

“Special case”:

Var

(
n∑

i=1

Xi

)
= Cov

(
n∑

i=1

Xi,

n∑
i=1

Xi

)

=

n∑
i=1

Var(Xi) +
∑
i ̸=j

Cov(Xi, Xj)

(for an example, see Q11 on sheet 3)
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Note. We have already seen that X, Y independent implies Cov(X,Y ) = 0, but it
is not the case the zero covariance implies independence.

Start of
lecture 12 Example 0. Var(X + Y ) = Var(X) + Var(Y ) for independent X,Y . Consider

Y = −X. Then

Var(Y ) = Var(−X) = (−1)2Var(x) = Var(X)

0 = Var(0) = Var(X + Y ) ̸= Var(X) + Var(Y ) = 2Var(X)

Example 1. (σ(1), . . . , σ(n)) uniform on
∑

n. Ai = {σ(i) = i}.

N = 1A1 + · · ·+ 1An = number of fixed points

Already seen: E[N ] = n× 1
n = 1. Goal: Var(N).

Note. Ai and Aj are not independent.

Var(1Ai) =
1

n

(
1− 1

n

)
Cov(1Ai ,1Aj ) = E[1Ai1Aj ]− E[1Ai ]E[1Aj ]

= E[1Ai∩Aj ]− E[1Ai ]E[1Aj ]

= P(Ai ∩Aj)− P(Ai)P(Aj)

=
1

n(n− 1)
− 1

n
× 1

n

=
1

n2(n− 1)

> 0

=⇒ Var(N) =
n∑

i=1

Var(1Ai) +
∑
i ̸=j

Cov(1Ai ,1Aj )

= n× 1

n

(
1− 1

n

)
+ n(n− 1)× 1

n2(n− 1)

= 1− 1

n
+

1

n
= 1
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Compare with Bin
(
n, 1

n

)
:

E = 1, Var = n× 1

n

(
1− 1

n

)
= 1− 1

n

Chebyshev’s Inequality

Theorem (Chebyshev’s Inequality). X a random variable, E[X] = µ, Var(X) =
σ2 <∞. Then:

P(|X − µ| ≥ λ) ≤ Var(X)

λ2

Comment: Remember the proof, not the statement!

Proof. Idea: Apply Markov’s Inequality to

(X − µ)2

(which is non-negative as required). Then:

P(|X − µ| ≥ λ) = P((X − µ)2 ≥ λ2)

≤ E[(X − µ)2

λ2

=
Var(X)

λ2

Comments

• Chebyshev’s Inequality gives better bounds than Markov’s inequality.

• Note can apply to all Random Variables, not just ≥ 0.

• However, Var(X) <∞ is a stronger condition than E[X] <∞.

Definition. • Quantity
√
Var(X) = σ is called the standard deviation of X.

• Same “units” as X. (Scales linearly)

• (Not many nice properties).

• Rewriting Chebyshev; use λ = k
√
σ2, then

P(|X − µ| ≥ σ) ≤ 1

k2

• Nice uniform statement
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Conditional Expectation

Setting: (Ω,F ,P).
Recall: B ∈ F with P(B) > 0 we defined

P(A | B) =
P(A ∩B)

P(B)

Definition. B ∈ F with P(B) > 0, X a random variable. The conditional expec-
tation is

E[X | B] =
E[X1B]

P(B)

Example. X dice, uniform on {1, . . . , 6}.

E[X | X prime] =
1
6 [0 + 2 + 3 + 0 + 5 + 0]

1
2

=
1

3
(2 + 3 + 5

=
10

3

Alternative Characterisation:

E[X | B] =
∑

x∈Im X

P(X = x | B)

Proof.

RHS =
∑ xP({X = x} ∩B)

P(B)

=
∑
x ̸=0

x∈Im X

xP(X1B = x

P(B)

and note
E[X1B] =

∑
x ̸=0

x∈Im X

xP(X1B = x)
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Law of Total Expectation

(B1, B2, . . . ) a finite or countably infinite partition of Ω with Bn ∈ F for all n such that
P(Bn) > 0. X is a random variable. Then:

E[X] =
∑
n

E[X | Bn]P(Bn)

For example, X = 1A recovers the law of total probability.
Proof.

RHS =
∑
n

E[X1Bn ]

= E[X · (1B1 + · · ·+ 1Bn)]

= E[X · 1]
= E[X]

Application: Two stage randomness where (Bn) describes what happens in stage 1.
Application 1: “random sums” (random number of terms).
(Xn)n≥1 independent and identically distributed random variables. N ∈ {0, 1, 2, . . . }
random index independent of (Xn).

Sn = X1 + · · ·+Xn

with E[Xn] = µ so E[Sn] = nµ. Then

E[SN ] =
∑
n≥0

E[SN | N = n]P(N = n)

=
∑

E[Sn]P(N = n)

=
∑
n≥0

nµP(N = n)

= µE[N ]

Start of
lecture 13 Random Walks

Setting: (Xn)n≥1 independent and identically distributed random variables

Sn = x0 +X1 + · · ·+Xn

(S0, S1, S2, . . . ) is a random process called Random Walk started from x0.
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Main example in our course:
Simple Random Walk (SRW) on Z.

P(Xi = +1) = p P(Xi = −1) = q = 1− p

x0 ∈ Z (often x0 = 0).
Special case: p = q = 1

2 . (“symmetric”):

For example, P(S2 = x0) = pq + qp = 2pq.

Useful interpretation: A gambler repeatedly plays a game where he wins £1 with P = p
and losses £1 with P = q.
Often we stop if we ever reach £0.

Question: Suppose we start with £x at time 0. What is the probability he reaches £a
before £0?

Notation.
PX(•)“ =′′ P(• | x0 = x)

“measure of RW started from x0”.

Key Idea: Conditional on S1 = z, (S1, S2, . . . ) is a random walk started from z.
Now we apply the Law of Total Probability:

PX(S hits a before 0 =
∑

PX(S hits a before 0 | S1 = z)PX(S1 = z)

=
∑
z

PZ(S hits a before 0)PZ(S1 = z)

so hX = PX(S hit a before 0). S1 = x± 1.

hX = pxx+1 + qhx−1

Important to specify boundary conditions:

h0 = 0, ha = 1.

Now we apply law of total expected value. Expected absorption time:

T = min{n ≥ 0 : Sn = 0 or Sn = a}
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“first time S hits {0, a}”. Want: Ex[T ] = τx.

τx = Ex[T ] = pEx[T | S1 = x+ 1] + qEx[T | S1 = x− 1]

= pEx+1[T + 1] + qEx−1[T + 1]

= p(1 + Ex+1[T ]) + q(1 + Ex−1[T ])

= 1 + pτx+1 + qτx−1

Boundary conditions:
τ0 = τa = 0

“we’re already there”

Solving Linear Recurrence Equations

Homogeneous case (boundary conditions: h0, ha):

phx+1 − hx + qhx−1 = 0

• Analagous to DEs

• Solutions form a vector space.

Plan: (homogeneous case):

• Find two solutions (linearly independent)

Guess hx = λx, so
pλx+1 − λx + qλx−1 = 0

pλ2 − λ+ q = 0

Quadratic in λ =⇒ λ = 1 or p
q .

Case q ̸= p: hx = A+B
(
q
p

)x
.

• Use boundary conditions to find A, B: i.e.

x = 0 : h0 = 0 = A+B

x = a : ha = 1 = A+B

(
q

p

)a

hx =

(
q
p

)x
− 1(

q
p

)a
− 1

Case p = q = 1
2 : (symmetric random walk)

• Note hx = x “x is the average of x+ 1 and x− 1”.
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General solution: hx = A+Bx. Boundary conditions:

h0 = 0 = A

ha = 1 = A+Ba

so A = 0, B = 1
a . Hence

hx =
x

a

Probability sanity check: p = q = 1
2 .

Study Expected profit if you start from £x and play until time T .

Ex[ST ] = aPx(ST = a) + 0× Px(ST = 0) = a · x
a
= x

fits intuition for fair games.

Inhomogeneous Case

phx+1 − hx + qhx−1 = f(x) = −1

Plan:

• Find a particular solution Guess: “one level more complicated than general solu-
tion”.

• Add on general solution

• Solve for boundary conditions

For p ̸= q: Guess hx = x
q−p works as a particular solution.

For p = q = 1
2 : Guess hx = Cx2 might work. Sub in:

C

2
(x+ 1)2 − Cx2 +

C

2
(x− 1)2 = −1 =⇒ C = −1

So
hx = A+Bx− x2

then find A, B with boundary conditions: roots are 0 and a, so

hx = x(a− x)

Start of
lecture 14
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Unbounded Random Walk: “Gambler’s Ruin”

Px(hit 0) = lim
a→∞

(hit 0 before a)

=


1−

(
q
p

)x
p > q

1 p < q

1 p = q = 1
2

p =
1

2
: Ex[time to hit 0] ≥ Ex[time to hit 0 or a] = x(a− x)

which →∞ as a→∞.

Key conclusion: Tx (time to hit 0 from x) is for p = 1
2 :

• finite with probability = 1

• infinite expectation
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Note (non-examinable). Alternative derivation of E[T1] =∞.

“Random Walk 2 7→ 1” = “Random Walk 1 7→ 0” + 1

E[T1] =
1

2
× 1 +

1

2
(1 + E[T2]︸ ︷︷ ︸

2E[T1]

)

E[T1] = 1 + E[T1]

so E[T1] =∞.

Generating Functions

Setting: X is a random variable taking values in {0, 1, 2, . . . }.

Definition. The Probability Generating Function of X is

GX(z) = E[zX ] =
∑
k≥0

zkP(X = k).

Analytic comment: GX : (−1, 1) k≥0→ R.

Idea: “To encode the distribution of X as a function with nice analytic properties”.

Example 1. X ∼ Bern(p)

GX(z) = z0P(X = 0) + z1P(X = 1) = (1− p) + pz

Example. X ∼ Bin(n, p) we will save for later.
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Example 2. X ∼ Poisson(λ)

GX(z) =
∑
k≥0

zke−λλ
k

k!

= e−λ
∑
k≥0

(λz)k

k!

= e−λeλz

= eλ(z−1)

Recovering PMF (mass function) from PGF

Note. GX(0) = 00P(X = 0) = P(X = 0).

Idea: Differentiate n times.

dn

dzn
GX(z) =

∑
k≥0

dn

dzn
(zk)P(X = k)

=
∑
k≥0

k(k − 1) · · · (k − n+ 1)zk−nP(X = k)

=
∑
k≥n

k(k − 1) · · · (k − n+ 1)zk−nP(X = k)

=
∑
l≥0

(l + 1)(l + 2) · · · (l + n)zlP(X = l + n)

Evaluate at 0:
dn

dzn
GX(0) = n!P(X = n).

P(X = n) =
1

n!
G

(n)
X (0)

Key fact: PGF determines PMF / distribution exactly.

Recovering other probabilistic quantities

Note. GX(1) =
∑

k≥0 P(X = k) = 1.

Technical comment: GX(1) means limz→1GX(z) if the domain is (−1, 1) (the limit is
from below).
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• What about G′
X(1)?

G′
X(z) =

∑
k≥1

kzk−1P(X = k)

G′
X(1) =

∑
k≥1

kP(X = k) = E[X]

• What about G
(n)
X (1)?

G
(n)
X (1) =

∑
k≥n

k(k − 1) · · · (k − n+ 1)P(X = k)

= E[X(x− 1) · · · (X − n+ 1)]

• Other expectations:

E[X2] = E[X(X − 1)] + E[X]

= G′′
X(1) +G′

X(1)

Var(X) = G′′
X(1) +G′

X(1)− [G′
X(1)]2

Idea: Find in general E[P (X)] using E[falling factorials of X.

Note (Linear Algebra Aside). The falling factorials

1, X,X(X − 1), X(X − 1)(X − 2)

form a basis for R[X] (the set of polynomials with real coefficients).

PGFs for sums of Independent Random Variables

X1, . . . , Xn independent random variables.
GX1 , . . . , GXn are the PGFs.
Let X = X1 + · · ·+Xn.
Question: What’s the PGF of X? (Is it nice)?

GX(z) = E[ZX ]

= E[zX1+···+Xn ]

= E[zX1zX2 · · · zXn ]

= E[zX1 ] · · ·E[zXn ]

= GX1(z) · · ·GXn(z)

Special case: Xi = X1 → GX(z) = (GX1(z))
n.
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Note.
E[f(X)g(Y )] = E[f(X)]E[g(Y )]

for independent random variables X,Y .

Start of
lecture 15 Note. PGF is much nicer than PMF of X!

Example. X ∼ Bin(n, p)
X = X1 + · · ·Xn

(Identical independently distributed Bern(p))

GX(z) = (1− p+ pz)n

Example. X ∼ Poi(λ), Y ∼ Poi(µ) independent.

GX(z) = eλ(z−1), GY (z) = eµ(z−1)

We will study Z = X + Y .

GX+Y (z) = GX(y)GY (z)

= eλ(z−1)eµ(z−1)

= e(λ+µ)(z−1)

= PGF of Poi(λ+ µ)

So X + Y ∼ Poisson(λ+ µ).

PGF for Random Sums

Setting: X1, X2, . . . IID with same distribution as X. X takes values in {0, 1, 2, . . . }
and N is a random value taking values in {0, 1, 2, . . . } independent of (Xn).
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Remark. Perfect pairing with PGFs.

E[zX1+···+Xn ] =
∑
n≥0

E[zX1+···+XN | N = n]P(N = n)

=
∑
n≥0

E[zX1+···+Xn | N = n]P(N = n)

=
∑
n≥0

E[zX1+···+Xn ]P(N = n)

=
∑
n≥0

E[zX1 ] · · ·E[zXn ]P(N = n)

=
∑
n≥0

(GX(z))nP(N = n)

= GN (GX(z))

Example. Xi ∼ Bern(p), N ∼ Poisson(λ).

GXi(z) = (1− p) + pz

GN (s) = eλ(s−1)

Interpretation: “Poisson thinning”, for example “Poi(λ) misprints, each gets found
with P = 1− p.” (see Q7 on Example sheet)

Y = X1 + · · ·+XN

GY (z) = GN (GXi(z))

= eλ[1−p+pz−1]

= eλp(z−1)

= PGF of Poi(λp)

In general: PMF of X1 + · · ·+Xn is horrible, GN (GX(z)) is nice.

Branching Process

“Modelling growth of a population”.
History:

• Bienaymé (1840s)

• Galton-Watson (1870s)
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Setting: Random branching tree.
Let X be a random variable on {0, 1, 2, . . . }.

• One individual at generation 0

• has a random number of children, with distribution X. If 0, end. Each child
independently has some children, each with distribution X.

• Continue.

Goal:

• Study number of individuals in each generation

• Total population size: is it finite of infinite.

Reduction: Write Zn = number of individuals in generation n.

Z0 = 1, Z1 ∼ X, Zn+1 = Z
(n)
1 + · · ·+X

(n)
Zn

“X
(n)
k = number of children of k-th individual in generation n”.

Note. If Zn = 0 then Zn+1 = Zn+2 = · · · = 0.

Key Observation: Zn+1 is a random sum,

E[Zn+1] = E[X]E[Zn]

Induction:
E[Zn] = (E[X])n
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Notation:
µ = E[X] =⇒ E[Zn] = µn.

Using PGFs: Let G be the PGF of X, Gn the PGF of Zn.
Random sums:

Gn+1(z) = Gn(G(z))

Induct:
Gn(z) = G(· · ·G(︸ ︷︷ ︸

n Gs

z) · · · )

Key event of interest:
{Zn = 0}, qn = P(Zn = 0)

“extinct by generation n”.

Definition (Extinction Probability).

q = P(Zn = 0 for n ≥ 1)

(which is the probability that the population size is finite)

Note. {Zn = 0} ⊆ {Zn+1 =}. Why? Because Zn = 0 =⇒ Zn+1 = 0, and

{Zn for some n ≥ 1} =
⋃
n≥1

{Zn = 0}

So continuity gives

P(Zn = 0) ↑ P

⋃
n≥1

{Zn = 0}


so

qn ↑ q

as n→∞.

Classification:

• µ < 1 subcritical

• µ = 1 critical

• µ > 1 supercritical

Degenerate case: P(X = 1) = 1. Boring → exercise.
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Theorem. Assume P(X = 1) ̸= 1. Then q = 1 (i.e. “always finite / dies out”) if
and only if µ = E[X] ≤ 1.

Remark. Interesting that depends on X only through E.

Start of
lecture 16

Interpretation: “Finite” eg 100 out of a large population, “Infinite” → affects positive
proportion of population.
Proof (baby proof). (subcritical) µ < 1

P(Zn ≥ 1) ≤ E[Zn]

1
= µn → 0

(Markov’s Inequality)
(supercritical):

Note. E[Zn]→∞ does not imply P(Zn = 0) ̸≈ 1.

Reminder: G the PGF of X, Gn the PGF of Zn. We care about {Zn = 0}, qn = P(Zn =
0). Also qn = Gn(0).

Claim. q the extinction probability, then G(q) = q.

Proof 1. G continuous. Note qn+1 = G(qn) and qn+1 → q, and G(qn) → G(q) so
q = G(q).

Proof 2. LTP (revision of random sums)

Total finite ⇐⇒ ALl subtrees of 1st generation are finite

q = P(finite)

=
∑
k≥0

P(all finite | Z1 = l)P(Z1 = k)

=
∑
k≥0

[P(finite)]kP(Z1 = k)

=
∑
k≥0

qkP(Z1 = k)

= G(q)

Facts about G:
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• G(0) = P(X = 0) ≥ 0

• G(1) = 1

• G′(1) = E[X] = µ

• G is smooth, all derivatives ≥ 0 on [0, 1).

Remark. • Exactly one solution on [0, 1)

• By IVT / Rolle on G(z)− z.

Theorem. Assume P(X = 1) ̸= 1. Then q is the minimal solution to z = G(z) in
[0, 1].

Corollary. q = 1 ⇐⇒ µ ≤ 1.

Proof. Let t be the minimal solution. Reminder: G is increasing,

t ≥ 0

=⇒ G(t) ≥ G(0)

=⇒ G(G(t)) ≥ G(G(0))

=⇒ Gn(t) ≥ Gn(0)

=⇒ t ≥ qn

=⇒ t ≥ q

Note q is a solution, so we must have q = t.
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Continuous Probability

Focus now: Case where Im(X) is an interval in R.
Why?

• Natural for measuring, for example physical quantity, for example proportions

• “Limits” of discrete random variable

• Calculus tools for nice calculations

Redefinition:

Definition. A random variable X on (ω,F ,P) is a function X : Ω → R such that
{X ≤ x} ∈ F .

Check: consistent with previous definition when Ω countable (or Im(X) is countable).

Drawback: Can’t take F = P(R).

Definition. The cumulative distribution function (CDF) of RV X is FX : R→ [0, 1]

FX(x) = P(X ≤ x)

Examples

X a dive on {1, . . . , 6}.

Angle of ludo spinner:
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Properties of CDF

• FX increasing, i.e. x ≤ y =⇒ FX(x) ≤ FX(y). Why? FX(x) = P(X ≤ x) ≤
P(X ≤ y) = FX(y).

• P(X > x) = 1− FX(x)

• P(a < x ≤ b) = FX(b)− FX(a). Why? P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a).

• FX is right-continuous and left limits exist, i.e.

lim
y↓x

FX(y) = FX(x)

and
lim
y↑x

FX(y) = FX(x−) = P(X < x)

• limx→∞ FX(x) = 1, limx→−∞ FX(x) = 0.

Start of
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Proof.

• (right-continuous) Sufficient to prove

FX

(
x+

1

n

)
→ FX(x)

as n→∞.

An =

{
x < X ≤ x+

1

n

}
decreasing events, with ⋂

n≥1

An = ∅

so

P(An) = FX

(
x+

1

n

)
− FX(x)→ 0
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• (left-limits) FX

(
x− 1

n

)
is a sequence increasing bounded above by FX(x).

{
Xn ≤ x− 1

n

}
is a increasing sequence of events with⋃

n≥1

{
X ≤ x− 1

n

}
= {X < x}

so

FX

(
x− 1

n

)
= P

(
X ≤ x− 1

n

)
→ P(X < x)

• (limx→∞ FX(x) = 1) {X ≤ n} increasing events,⋃
n≥1

{X ≤ n} = Ω

so
FX(n) = P(X ≤ n)→ P(Ω) = 1

• Similar for limx→−∞ FX(x) = 0.

Definition. • A random variable is continuous if F is continuous. This implies
that

– FX(x) = FX(x−) ⇐⇒ P(X ≤ x) = P(X < x) ⇐⇒ P(X = x) = 0 ∀ x

– and in this course F is also differentiable so that

FX(x) = P(X ≤ x) =

∫ x

u=−∞
fX(u)du

(cf Part II P & M) where fX : R→ R has the properties:

∗ fX(x) ≥ 0 for all x

∗
∫∞
−∞ fX(x)dx = 1

fX is the probability density function of X (PDF or “density”).

Intuitive Meaning:
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P(x < X ≤ x+ δx) =

∫ x+δx

x
fX(u)du ≈ δx · f(x)

P(a < X ≤ b) =

∫ b

a
fX(x)dx = P(a ≤ X < b)

So for S ⊂ R (S “nice” for example interval or countable union of intervals).

P(X ∈ S) =

∫
S
fX(u)du

Key Takeaways

• The CDF is a collection of probabilities

• PDF is not a probability. How to use? Integrate it to get a probability.

Examples

(1) Uniform distribution X ∼ U [a, b] (a, b ∈ R, a < b).

fX(x) =

{
1

b−a x ∈ [a, b]

0 otherwise

FX(x) =

∫ x

a
fX(u)du

x− a

b− a

for a ≤ x ≤ b.
Question: “Limit of discrete uniform random variables?”

(2) Exponential distribution λ > 0.

X ∼ Exp(λ)

59



fX(x) =

{
λe−λx x > 0

0 otherwise

Check:

(i) ≥ 0? Yes

(ii)
∫∞
0 fX(x) = [−e−λx]∞0 = 1.

FX(x) = P(X ≥ x) =

∫ x

0
λe−λudu = 1− e−λx

Remember:
P(X ≥ x) = 1− FX(x) + P(X = x) = e−λx

“Limit of (rescaled) geometric distribution”. Good way to model arrival times “how
long to wait before something happens” → link to Poisson usage ↔ Part II Applied
Probability.

Memoryless Probability

(Conditional P works as before). X ∼ Exp(λ), s, t > 0.

P(X ≥ s+ t | X ≥ s) =
P(X ≥ s+ t)

P(X ≥ s)

=
e−λ(s+t)

e−λs

= e−λt

= P(X ≥ t)

Exercise: X memoryless ⇐⇒ X ∼ Exp(λ). (continuous random variable with a
density).

Expectation of Continuous Random Variables

Definition. X has density fX . The expectation is

E[X] :=

∫ ∞

−∞
xfX(x)dx

and

E[g(X)] :=

∫ ∞

−∞
g(x)fX(x)dx

Technical Comment: assumes at most one of∫ 0

−∞
|x|fX(x)dx

60



and ∫ ∞

0
xfX(x)dx

is infinite.

Linearity of expectation:

E[λX + µY ] = λE[X] + µE[Y ]

as before.

Claim. X ≥ 0. Then

E[X] =

∫ ∞

0
P(X ≥ x)dx

Proof.

E[X] =

∫ ∞

0
xfX(x)dx

=

∫ ∞

0

(∫ x

0
1du

)
fX(x)dx

=

∫ ∞

0
du

∫ ∞

u
dxfX(x)

=

∫ ∞

0
duP(X ≥ u)

Start of
lecture 18

Variance:
Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2

Var(aX + b) = a2Var(X)

Examples

Uniform: U ∼ U [a, b].

E[U ] =

∫ b

a
x

dx

b− a
=

1
2b

2 − 1
2a

2

b− a
=

a+ b

2

E[U2] =

∫ b

a
x2

dx

b− a
=

1
3b

3 − 1
3a

3

b− a
=

1

3
(a2 + ab+ b2)

Var(U) =
1

3
(a2 + ab+ b2)−

(
a+ b

2

)2

=
(b− a)2

12

61



Exponential: X ∼ Exp(λ).

E[X] =

∫ ∞

0
λxe−λxdx

= [−xe−λx]∞0 +

∫ ∞

0
e−λxdx

=
1

λ

E[X2] =

∫ ∞

0
λx2e−λxdx

= [−x2e−λx]∞0 + 2

∫ ∞

0
xe−λxdx

= 0 +
2

λ2

Var(X) =
2

λ2
− 1

λ2

=
1

λ2

Goal: U ∼ Unif[a, b], Ũ ∼ Unif[0, 1]. Write U = (b− a)Ũ + a, and carry all calculations
over.

Transformations of Continuous Random Variables

Goal: View g(X) as a continuous random variable with its own density.

Theorem. • X continuous random variable with density f

• g : R→ R continuous such that

(i) g is either strictly increasing or decreasing

(ii) g−1 is differentiable
Then g(X) is a continuous random variable with density

f̂(x) = f(g−1(x))

∣∣∣∣ ddxg−1(x)

∣∣∣∣︸ ︷︷ ︸
(†)

(∗)

(† is ≥ 0 if g is strictly increasing).

Comments

• Density is? Something to integrate over to get a probability

• (∗) is integration by substitution

62



• Proof use CDFs (which are probabilities).

Proof.

Fg(X)(x) = P(g(X) ≤ x)

= P(X ≤ g−1(x))

= FX(g−1(X))

Differentiate:

F ′
g(X)(x) = F ′

X(g−1(x))
d

dx
g−1(x)

= f(g−1(x))
d

dx
g−1(x)

(g strictly decreasing is similar → exercise (revision!))

Sanity check: We’ve got two expressions for E[g(x)] (assume: Im(X) = Im(g(X)) =
(−∞,∞)) new expression:

E[g(X)] =

∫ ∞

−∞
xf̂(x)dx

=

∫ ∞

−∞
xf(g−1(x))

d

dx
g−1(x)dx

Substitute: g−1(x) = u. So du = dx d
dx g

−1(x).

=

∫ ∞

u=−∞
g(u)f(u)du

Example. • X ∼ Exp(λ), Y = cX.

P(Y ≤ x) = P
(
X ≤ X

c

)
= 1− e−λx

c = 1− e−
λ
c
x = CDF of Exp

(
λ

c

)

• f̂(x) = 1
cf
(
x
c

)
= 1

cλe
−λx

c = λ
c e

−λ
c
x.
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Example. The Normal Distribution (also Gaussian). Range: (−∞,∞). Two
parameters: µ ∈ (−∞,∞), σ2 ∈ (0,∞). (the mean and variance).

X ∼ N(µ, σ2)

fX(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
Special case: “Standard normal”: Z ∼ N(0, 1)

fZ(x) =
1√
2π

e−
x2

2 =: φ(x)

Comments

• 1√
2π

is a “normalising constant”. (Recall we need
∫
fdx = 1).

• e−
x2

2 = very rapid decay as x→ ±∞.

• N(µ, σ2) used for modelling non-negative quantity. (because if µ is large P(N(µ, σ2) <
0) is very small).

Checklist

(Z, standard normal)

(i) fZ is a density. Proof.

I =

∫ ∞

−∞
e−

x2

2 dx

Clever idea: use I2 instead

I2 =

∫ ∞

−∞

∫ ∞

−∞
e−

u2

2 e−
v2

2 dudv =

∫∫
e−

u2+v2

2 dudv

Polar coordinates: u = r cos θ, v = r sin θ:

=

∫ ∞

r=0

∫ 2π

θ=0
re−

r2

2 drdθ = 2π

∫ ∞

r=0
re−

r2

2 dr = 2π

(ii) E[Z] = 0 by symmetry.
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(iii) Var(Z) = 1. Proof. Sufficient to prove E[Z2] = 1.

E[Z2] =
1√
2π

∫ ∞

−∞
x2e−

x2

2 dx

=
1√
2π

∫ ∞

−∞
x · xe−

x2

2 dx

=

−x · e−x2

2

√
2π

∞

−∞

+
1√
2π

∫ ∞

−∞
e−

x2

2 dx

= 1

Start of
lecture 19 Studying N(µ, σ2) via linear transformations

Facts about X ∼ N(µ, σ2):

(i) X has the same distribution as µ+ σZ where Z ∼ N(0, 1).

(ii) X has CDF

FX(x) = Φ

(
x− µ

σ

)

Notation. Φ is the CDF of N(0, 1)

(iii) E[X] = µ, Var(X) = σ2.

Proof.

(i) g(z) = µ+ σz so g−1(x) = x−µ
σ . Then g(Z) has density

=
1

σ
fZ

(
x− µ

σ

)
=

1

σ
√
2π

e−
(x−µ)2

2σ2

(ii) Fg(Z)(x) = P(g(Z) ≤ x) = P
(
Z ≤ x−µ

σ

)
= Φ

(x−µ
σ

)
.

(iii) Use part (i):
E[X] = E[µ+ σZ] = µ+ σE[Z] = µ

Var(µ+ σZ) = σ2Var(Z) = σ2
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Remark. Reduces to Φ: lookup in book / table / Wolfram Alpha.

Usage: X ∼ N(µ, σ2)

P(a ≤ X ≤ b) = P
(
a− µ

σ
≤ X − µ

σ
≤ b− µ

σ

)
= P

(
a− µ

σ
≤ Z ≤ b− µ

σ

)
= Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
Special case:

a = µ− kσ, b = µ+ kσ

(k ∈ {1, 2, . . . }). Recall: σ is the standard deviation.

P(a ≤ X ≤ b) = Φ(k)− Φ(−k)

“within k standard deviations of the mean”.

Definition. X a continuous random variable. The median of X is the number m
such that P(X ≤ m) = P(X ≥ m) = 1

2 , i.e.∫ m

−∞
fX(x)dx =

∫ ∞

m
fX(x)dx =

1

2

Comments

• For X ∼ N(µ, σ2) and other distributions symmetric about mean, we have median
m = E[X].

• Sometimes |X −m| better than |X − µ| for interpretation.
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More than one continuous Random Variables

Allow random variables to take values in Rn. For example

X = (X1, . . . , Xn) ∈ Rn

is a random variable. Say X has density f : Rn → [0,∞) if

P(X1 ≤ x1, . . . , xn ≤ xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(u1, . . . , un)

∏
i

dui

(integrate over (−∞, x1]× · · · × (−∞, xn])

Consequence:

P((X1, . . . , Xn) ∈ A) =

∫
A
f(u)du

for all “measurable” A ⊂ Rn.

Definition. f is called a multivariate density function or (especially n = 2) a joint
density.

Definition. Random variables X1, . . . , Xn independent if

P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn) (∗)

Goal: convert to statement about densities.

Definition. X = (X1, . . . , Xn) has density f . The marginal density fXi of Xi is

fXi(xi) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x1, . . . , xn)

∏
j ̸=i

dxj

“density of Xi viewed as a random variable by itself”.
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Theorem 1. X = (X1, . . . , Xn) has density f .

(a) if X1, . . . , Xn independent, with marginals fX1 , . . . , xXn . Then

f(X1, . . . , Xn) = fX1(x1) · · · fXn(xn)

(b) Suppose f factorises as

f(X1, . . . , Xn) = g1(x1) · · · gn(xn)

for non-negative functions (gi). Then X1, . . . , Xn are independent and marginal
fXi ∝ gi.

Proof.

(a)
P(X1 ≤ x1, . . . , Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn)

=

[∫
−∞∞fX1(u1)du1

]
· · ·
[∫ ∞

−∞
fXn(un)dun

]
=

∫ x1

−∞

∫ xn

−∞

∏
fXi(ui)

∏
dui

which matches with definition of f .

(b) Idea:

• Replace gi(x) with hi(x) =
gi(x)∫
gi(u)du

. hi is a density.

• compute integral at (∗)

Transformation of Multiple Random Variables

Key Example 1: X,Y independent with densities fX , fY .
Goal: density of Z = X + Y .

Step 1: Declare the joint density

fX,Y (x, y) = fX(x)fY (y).
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Step 2: CDF of Z:

P(X + Y ≤ z) =

∫∫
{x+y≤z}

fX,Y (x, y)dxdy

=

∫ ∞

x=−∞

∫ z−x

y=−∞
fX(x)fY (y)dxdy

=

∫ ∞

x=−∞

∫ z

y′=−∞
fY (y

′ − x)fX(x)dy′dx substitute y′ = y + x

=

∫ x

y=−∞
dy

(∫
x = −∞∞fY (y − x)fX(x)dx

)
So density of Z:

fZ(z) =

∫ ∞

x=−∞
fY (z − x)fX(x)dx︸ ︷︷ ︸

Convolution of fX and fY

Start of
lecture 20 Note. The discrete equivalent is X,Y ≥ 0 independent,

P(X + Y ) = k) =
k∑

l=0

P(X = l)P(Y = k − l)

Example. X,Y
IID∼ Exp(λ). Z = X + Y .

fZ(z) =

∫ z

x=0
λ2e−λxe−λ(z−x)dx

= λ2

∫ z

x=0
e−λzdz

= λ2ze−λz

Definition. X ∼ J(n, λ) Gamma distribution. λ > 0, n ∈ {1, 2, . . . }. Range is
[0,∞). Density:

fX(x) = e−λx λ
nxn−1

(n− 1)!

n = 1 7→ Exp(λ)

n = 2 7→ λ2xe−λx

So X + Y ∼ J(2, λ). (and in fact: X1 + · · ·+Xn ∼ J(n, λ)).
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Example. X1 ∼ N(σ1, σ
2
1), X2 ∼ N(µ2, σ

2
2) independent. Then: X1+X2 ∼ N(µ1+

µ2, σ
2
1 + σ2

2).

Note. Already know that

E[X1 +X2] = µ1 + µ2 Var(X1 +X2) = σ2
1 + σ2

2

Proof.

• Calculation exercise

• Generating functions?? Coming up.

Theorem. Let X = (X1, . . . , Xn) on D. g : Rn → Rn well-behaved.

U = g(X) = (U1, . . . , Un)

Joint density fX(x) is continuous. Then joint density

fU (u) = fX(g−1(u))|J(u)|

where

J = det

((
∂[g−1]i
∂uj

)n

i,j=1

)
“Jacobean” (d× d matrix)

“Proof” Definition of multivariate integration by substitution.
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Example (Radial Symmetry). X,Y
IID∼ N(0, 1). Write (X,Y ) = (R cos θ,R sin θ).

Range: R > 0, θ ∈ [0, 2π).

fX,Y (x, y) =
1√
2π

e−
x2

2
1√
2π

e−
y2

2

=
1

2π
e−

x2+y2

2

Note.

|Jacobean of g−1| = 1

|Jacobean of g|

J =

∣∣∣∣ cos θ sin θ
−R sin θ R cos θ

∣∣∣∣ = R(cos2 θ + sin2 θ) = R

So fR,θ(r, θ) =
1
2πe

− r2

2 × r. Marginal:

fθ(θ) =
1

2π

fR(r) = e−
r2

2 × r

Conclusion: θ,R are independent. θ is uniform on [0, 2π).

Note. Change of range: for example X,Y ≥ 0, Z = X + Y .

fX,Z(x, z) =?(x, z)1(Z≥x)

so X,Z not independent, even if ? splits as a product.

Moment Generating Function

Definition. Let X have density f . The MGF of X is:

mX(θ) := E[eθX ] =

∫ ∞

−∞
eθxf(x)dx

whenever this is finite.

Note. mX(0) = 1.
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Theorem. The MGF uniquely determines distribution of a random variable when-
ever it exists for all θ ∈ (−ε, ε) for some ε > 0.

Theorem. Suppose m(θ) exists for all θ ∈ (−ε, ε). Then

m(n)(0) =
dn

dθn
m(θ)

∣∣
m=0

= E[Xn]

(E[Xn] is the “n-th moment”)

Proof comment: ∂eθx

∂θ = xneθx.

Claim. X1, . . . , Xn independent.

X = X1 + · · ·+Xn

Then

mX(θ) = E[eθ(X1+···+Xn)]

= E[eθX1 ] · · ·E[eθXn ]

=
∏

mXi(θ)
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Example. Gamma distribution: X ∼ J(n, λ).

fX(x) = e−λx λ
nxn−1

(n− 1)!

m(θ) =

∫ ∞

0
eθxe−λx λ

nxn−1

(n− 1)!
dx

=

∫ ∞

0
e−(λ−θ)xxn−1 λn

(n− 1)!
dx

=

(
λ

λ− θ

)n ∫ ∞

0
e−(λ−θ)xxn−1 (λ− θ)n

(n− 1)!
dx

=

(
λ

λ− θ

)n

(θ < λ (and infinite if θ ≥ λ))

Exp(λ)→
(

λ

λ− θ

)
MGF

We’ve proved
X1 + · · ·+Xn ∼ J(n, λ)

Start of
lecture 21 Example. X ∼ N(µ, σ2)

fX(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)

mX(θ) = exp

(
θµ+

θ2µ2

2

)
So X1 ∼ N(µ1, σ

2
1), X2 ∼ N(µ2, σ

2
2) independent.

mX1+X2(θ) = exp

(
θµ1 +

θ2µ2
1

2

)
exp

(
θµ2 +

θ2σ2

2

)
= exp

(
θ(µ1 + µ2) +

θ2

2
(σ2

1 + σ2
2)

)
︸ ︷︷ ︸

MGF of N(µ1 + µ2, σ2
1 + σ2

2)

Convergence of Random Variables
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Definition. Let (Xn)n≥1 and X be random variables. We say Xn converges to X

in distribution and write Xn
d→ X if

FXn(x)→ FX(x) (∗)

for all x ∈ R which are continuity points of Fx.

Example 1.

Xn =
1

n
Unif({1, . . . , n}) X ∼ Uni[0, 1]

Fx continuous

•• (∗) holds for all x ∈ [0, 1].

Example 2.

Xn =

{
0 with P = 1

2

1 + 1
n with P = 1

2

Xn → Bern

(
1

2

)
since FXn(x) =

1
2 for all x ∈ (0, 1), FXn(x) = 1 for all x > 1. When n is large

FXn(1) =
1

2
FX(1) = 1

But FX(•) has a discontinuity at x = 1. (i.e. deterministic convergence of reals)
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Consequences

(1) If X is a constant c, then equivalent to:

∀ε > 0 P(|Xn − c| > ε)→ 0

as n→∞. “convergence in probability to constant”.

(2) If X is a continuous random variable: Xn
d→ X. Usage:

P(a ≤ Xn ≤ b)→ P(a ≤ X ≤ b)

for all a, b ∈ [−∞,∞].

Note. Does not say that densities converge. For example, in Example 1 no
density.

Laws of Large Numbers

Sn
n “→′′ µ.

Theorem (Weak LLN). Setup: (Xn)n≥1 IID with µ = E[X1] <∞. Set

Sn = X1 + · · ·+Xn ∀n ≥ 0

Then ∀ε > 0:

P
(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε

)
→ 0

as n→∞.

Proof. (assume Var(X1) = σ2 <∞)

P
(∣∣∣∣Sn

n
− µ

∣∣∣∣ > ε

)
= P(|Sn − nµ| > εn)

≤ Var(Sn)

ε2n2

=
nσ2

ε2n2

→ 0

as n→∞. (Note that ε is fixed, not ε→ 0!)

Central Limit Theorem
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Theorem (CLT). Same setup as previous. Demand σ2 <∞. Then

Sn − nµ√
nσ2

d→ N(0, 1)

as n→∞.

Discussion: three stage summary

(1) Distribution of Sn concentrated on nµ (WLLN)

(2) Fluctuations around nµ have order
√
n (New and important)

(3) Shape is normal (Detail)

Usage:

(i) Sn
d
≈ N(nµ, nσ2)

(ii)

P(a ≤ Sn ≤ b) = P
(
a− nµ√

nσ2
≤ Sn − nµ√

nσ2
≤ b− nµ√

nσ2

)
≈ P

(
a− nµ√

nσ2
≤ Z ≤ b− nµ√

nσ2

)
Get a nice answer if a = nµ+ za

√
n and b = nµ+ zb

√
n.

Theorem (Continuity theorem for MGFs). (Xn), X have MGFs mXn(•),mX(•)

• mX(θ) <∞ for θ ∈ (−ε, ε)

• if mXn(θ)→ mX(θ) for all θ such that mX(θ) <∞.

Then Xn
d→ X.

Proof. Part II Probability and Measure.

Idea: Expand mX(θ) as Taylor series around 0.

mX(θ) = 1 +m′
X(0)θ +

m′′
X(0)

2!
θ2 + · · ·

= 1 + θE[X] +
θ2

2
E[X2] + o(θ2)

Proof: (WLLN via MGFs).
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Remark. Know MGF of Sn. Want to study the MGF of Sn
n .

mSn
n
(θ) = E[eθ

Sn
n ]

= E[e
θ
n
Sn ]

= mSn

(
θ

n

)
= mX1

(
θ

n

)
· · ·mXn

(
θ

n

)
=

(
1 + µ

θ

n
+ o(θ)

)n

→ eµθ

MGF of the random variable X = µ with P = 1. So Sn
n

d→ µ by the continuity
theorem.

Theorem (Strong LLN). Same setup: Then

P
(
Sn

n
→ µ as n→∞

)
= 1.

“almost sure convergence” or “convergence with probability 1”.

Start of
lecture 22

Proof (CLT with MGFs). Assume WLOG µ = 0 and σ2 = 1. (So E[X2
i ] = 1). (In

general X 7→ X−µ√
σ2

).

Goal:
Sn√
n

d→ N(0, 1)
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Study MGF of Sn√
n
.

mXi(θ) = 1 +
θ2

2
+ o

(
1

n

)
m Sn√

n
(θ) = E[eθ

Sn√
n ]

= E[e
θ√
n
Sn ]

= mSn

(
θ√
n

)
=

(
mX1

(
θ√
n

))n

=

(
1 +

θ2

2n
+ o

(
1

n

))n

→ e
θ2

2

Inequalities for E[f(X)]

Motivation: f(x) = x2. We know

E[f(X)] ≥ f(E[X])

via Var(X) ≥ 0. What about general f?
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Definition. A function f : R→ R is convex if ∀ x, y ∈ R and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

(Aside: region above f is convex in R2.)

Consequence: ∀ y there exists a line l(x) = mx+ c such that

• l(x) ≤ f(x) for all x

• l(y) = f(y)

Proof. Convexity implies that for all x < y < z,

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
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hence

M− := sup
x<y

f(y)− f(x)

y − x
≤ inf

z>y

f(z)− f(y)

z − y
=: M+

any value m ∈ [M−,M+] works as the gradient of l(•).

Definition. f is concave if and only if −f is convex.

Fact: if f is twice differentiable then

f convex ⇐⇒ f ′′(x) ≥ 0 ∀ x

for example f(x) = 1
x is convex on (0,∞) and concave on (−∞, 0).

Jensen’s Inequality
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Theorem (Jensen’s Inequality). X a random variable, f convex:
Then E[f(X)] ≥ f(E[X]). (reverse if f concave)

Proof. Set y = E[X] as in (∗), l(x) = mx+c, such that l(y) = f(y) = f(E[X]) and f ≥ l.

E[f(X)] ≥ E[l(X)]

= E[mX + c]

= mE[X] + c

= my + c

= f(E[X])

If f strictly convex, then ∀t ∈ (0, 1), ∀x ̸= y,

f(tx+ (1− t)y) < tf(x) + (1− t)f(y)

Then equality in Jensen’s inequality only if X = E[X] with P = 1 (for example constant
random variable).

Informal comment:

Jensen’s Inequality ≥ Most other inequalities!

Application to Sequences

AM-GM inequality: x1, . . . , xn ∈ (0,∞)

x1 + · · ·+ xn
n

≥

(
n∏

i=1

xi

)1/n

Case n = 2:
x+ y

2
≥ √xy

Proof. Rearrange to get (x− y)2 ≥ 0.

General proof:
Let X be a random variable taking values {x1, . . . , xn} each with probability 1

n .
Take: f(x) = − log x. Check convex: second derivative ≥ 0.
Jensen:

E[f(X)] ≥ f(E[X])

− log x1 + · · ·+ log xn
n

≥ − log

(
x1 + · · ·+ xn

n

)
log((x1 · · ·xn)1/n) ≤ log

(
x1 + · · ·+ xn

n

)
log x and ex are increasing so(∏

i

xi

)1/n

≤ x1 + · · ·+ xn
n
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Sampling a Continuous Random Variable

Theorem. X a continuous random variable with CDF F . Then if U ∼ U [0, 1], we
have

Y = F−1(U) ∼ X

Proof. Goal: find CDF of Y .

P(Y ≤ x) = P(F−1(U) ≤ x)

= P(U ≤ F (x))

= F (x)

so CDF of Y = CDF of X. So Y ∼ X.

Rejection Sampling

Idea: Uniform on [0, 1]d is easy. (take (U (1), . . . , U (d)) IID on U [0, 1].)

What about uniform on A?
Start of
lecture 23

Goal:

f(x) =

{
1

area(A) x ∈ A

0 x ̸∈ A

(in higher dimensions, volume(A)−1)

Rewrite as

f(x) =
1A

area(A)

Let U1, U2, . . . IID uniform on [0, 1]d and let N = min{n : Un ∈ A}.
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Claim. UN is uniform on A. (i.e. has density f)

Proof. Note P(N <∞) = 1 if area(A) > 0.
Goal:

P(Un ∈ B) =

∫
B
f(x)dx =

area(B)

area(A)

for all B ⊂ A with a well-defined area.

P(Un ∈ B) =
∑
n≥1

P(Un ∈ B,N = n)

=
∑
n≥1

P(U1 ̸∈ A, . . . , Un−1 ̸∈ A,Un ∈ B)

=
∑
n≥1

P(U1 ̸∈ A)n−1P(Un ∈ B)

=
∑
n≥1

(1− area(A))n−1 × area(B)

=
area(B)

1− (1− area(A))

=
area(B)

area(A)

Idea: X a continuous random variable on [0, 1], density f is bounded. Let

A = {(x, y) : x ∈ [0, 1], y ≤ fX(x)}

i.e. shaded region
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Let U = (U (1), U (2)) be uniform on A. Then claim: U (1) ∼ X.
Why?

P(U (1) ≤ u) = P(in relevant area)

= area({x, y} : x ≤ u, y ≤ fX(x))

=

∫ u

0
fX(x)dx

= FX(u)

(note that the first and last expressions are the CDFs of U (1) and X respectively)
Usage: in higher dimension.
X a continuous random variable on [−K,K]d with density bounded. Let

A = {(x, y) : x ∈ [−K,K]d, y ≤ fX(x)} ⊂ Rd+1

Let U = (U, U+). Then U ∼ X. (the proof is similar).

Multivariate Normals / Gaussians

Definition. A random variable is Gaussian if X ∼ N(µ, σ2).

Motivation: X,Y independent Gaussian. Then bX + cY is Gaussian (∗).
Exercise: there exist joint random variables (X,Y ) such that both X,Y are Gaussian,
but X + Y not Gaussian.

Question: Can we have dependent X,Y such that (∗) still holds?

Definition. Random vector (X,Y ) is Gaussian if bX + cY are Gaussian for all
b, c ∈ R, i.e. bX + cY ∼ N(??, ??).

Consequences:
E[bX + cY ] = bE[X] + cE[Y ]

Var(bX + cY ) = b2Var(X) + c2Var(Y ) + 2bcCov(X,Y )

Linear Algebra Rewrite

Random vector X = (X1, . . . , Xn) ∈ Rn is Gaussian if u⊤X is Gaussian ∀ u ∈ Rn. Write
µ = E[X] ∈ Rn.
Covariance matrix:

V = (Cov(Xi, Xj))
n
i,j=1 ∈ Rn × Rn

i.e. for n = 2:

V =

(
Var(X) Cov(X,Y )

Cov(Y,X) Var(Y )

)
(note V is symmetric). In fact u⊤X ∼ N(u⊤µ, u⊤V u).
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MGFs in One Direction (Recap)

Distribution of X ∈ R determined by function mX(θ) = E[eθX ], θ ∈ (−ε, ε).

MGFs in Rn

Distribution of X ∈ Rn determined by

mX(u) = E[eu
⊤X u ∈ (−ε, ε)n

If X Gaussian, then

mX(u) = exp

(
u⊤µ+

1

2
u⊤V u

)
Logical overview: X ∈ Rn Gaussian

• distribution defined by MGF

• MGF defined by µ and V

=⇒ distribution of X defined by µ and V

Remark. Density:

fX(x) =
1

(2π)n/2
1√

det(V )
exp

(
−1

2
(x− µ)⊤V (x− µ)

)

Return to n = 2: For a Gaussian vector (X1, X2)

Independent ⇐⇒ Cov(X1, X2) = 0

(Note that the backwards direction is not true in general!)

Why useful? Imagine X1, X2 describe real-world parameters, for example height vs 1km
running time.

• Independence would be an interesting conclusion

• Cov(?, ?) can be sampled.

Start of
lecture 24

Proof. X = (X1, X2) independent. If mX((u1, u2)) splits as a product f1(u1)f2(u2). In
our setting:

exp(u⊤µ) = exp(u1µ2) exp(u2µ2)

exp

(
1

2
u⊤V u

)
= exp(u21σ

2
1) exp(u

2
2σ

2
2) exp(2u1u2Cov(X1, x2))

So it splits as a product if and only if Cov = 0.

Motivation: Cov(100X1, X2) = 100Cov(X1, X2) so “large covariance” doesn’t imply
“very dependent”.
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Definition. Correlation of X, Y is

Corr(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

(It is a fact that this is always ∈ [−1, 1])

Proposition. If (X,Y ) Gaussian, then Y = aX + Z where Z is Gaussian, and
(X,Z) independent.

Proof. Define Z = Y − aX for a ∈ R.

Claim. (X,Z) is Gaussian.

Proof.
u1X + u2Z = u1X + u2(Y − aX) = (u1 − au2)X + u2Y.

Goal: find a such that Cov(X,Z) = 0.

Cov(X,Z) = Cov(X,Y − aX) = Cov(X,Y )− aVar(X)

so take

a =
Cov(X,Y )

Var(X)

Then Cov(X,Z) = 0 so X,Z independent.

2.1 Two Historical Models

Bertrand’s Paradox

Goal: choose a uniform chord of circle. Two methods:
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(i) A, B uniform on circumference.

(ii) midpoint M uniform on disc.

Conclusion: Gives different distributions. (Completely unsurprising?)

Method (i)

θ ∼ Unif
[
0, π2

]
then |AB| = 2r sin θ. Note |OM | = r cos θ, so P(|OM | ≤ εr) ≈ rε when

ε→ 0.

Method (ii)

P(|OM | ≤ εr) = π(εr)2

πr2
= ε2.
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Buffon’s Needle

• Lines spaced L apart.

• Needle length L dropped “uniformly”

• Observe whether intersects a line.

We work “modulo L”:

X centre ∼ Unif[0, L)

Angle θ ∼ Unif[0, π)

Density of (X, θ) constant = 1
Lπ . Crosses line if

X ≤ L

2
sin θ
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or

L−X ≤ L

2
sin θ

P(crosses line) = P
(
min(X,L−X) ≤ L

2
sin θ

)
= 2P

(
X ≤ L

2
sin θ

)
= 2

∫ π

θ=0

∫ L
2
sin θ

x=0

1

Lπ
dxdθ

= 2

∫ π

θ=0

1

2π
sin θdθ

=
2

π
≈ 0.64

What’s the point? Calculate π experimentally.
Efficiency? Try n times. Number of intersections: Sn ∼ Bin

(
n, π2

)
.

Proportion p̂n of intersections = Sn
n . By CLT:

p̂n = p+

√
p(1− p)

n
Z

so

p̂n − p ≈
√

p(1− p)

n
Z.

Estimate:

π̂n =
2

p̂n
Taylor expanding:

π̂n =
2

p̂n

≈ 2

p
− (p̂n − p)

2

p2

so

π̂n − π ≈ −π2

2

√
p(1− p)

n
Z ≈ −2.4√

n
Z

So if you seek
π̂n − π ≈ O(10−k)

(correct to k decimal places) then we need n ≈ 102k.

• Historical interest.

• Not computationally efficient.

• Detailed calculation of sampling errors in other settings on problem sheet.
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