Probability

April 13, 2022

Contents

Start of

lecture 1 **Example 0.** Dice: outcomes $1, 2, \ldots, 6$.

$$
\bullet \ \mathbb{P}(2) = \tfrac{1}{6}
$$

• P(multiple of 3) = $\frac{2}{6} = \frac{1}{3}$ $\frac{1}{3}$.

•
$$
\mathbb{P}(\text{prime or a multiple of 3}) = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}
$$

$$
= \frac{4}{6} = \frac{2}{3}
$$

$$
= \frac{1}{3} + \frac{1}{2} - \mathbb{P}(\text{prime and a multiple of 3})
$$

$$
= \frac{1}{3} + \frac{1}{2} - \frac{1}{6} = \frac{2}{3}
$$

• $\mathbb{P}(\text{not a multiple of 3}) = \frac{2}{3}.$

1 Formal Setup

Definition. • Sample space Ω , a set of outcomes. • $\mathcal F$ a collection of subsets of Ω (called *events*). • $\mathcal F$ is a σ -algebra ("sigma-algebra") if: F1 $\Omega \in \mathcal{F}$ F2 if $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$ $(A^c := \Omega \setminus A)$ F3 \forall countable collections $(A_n)_{n\geq 1}$ in $\mathcal F$ the union $\overline{}$ $n\geq 1$ $A_n \in \mathcal{F}$ also.

Given σ -algebra $\mathcal F$ on Ω , function $\mathbb P : \mathcal F \to [0,1]$ is a probability measure if P2 $\mathbb{P}(\Omega) = 1$

P3 \forall countable collections $(A_n)_{n\geq 1}$ of disjoint events in \mathcal{F} :

$$
\mathbb{P}\left(\bigcup_{n\geq 1} A_n\right) = \sum_{n\geq 1} \mathbb{P}(A_n).
$$

(P1 was historically taken to state that $\mathbb{P}(A) \geq 0$, but this is already captured by the notation $\mathbb{P}: \mathcal{F} \to [0,1]$.

Then $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

Revisiting dice example

For a dice we have:

$$
\Omega = \{1, 2, \dots, 6\}
$$

\n
$$
\mathbb{P}(1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } 6) = 1.
$$

\n
$$
\mathcal{F} = \mathcal{P}(\Omega)
$$

Question: Why $\mathbb{P}: \mathcal{F} \to [0,1]$ not $\mathbb{P}: \Omega \to [0,1]$? Ω finite / countable

- In general: $\mathcal{F} = \text{all subsets of } \Omega$. ($\mathbb{P}(\Omega)$).
- $\mathbb{P}(2)$ is shorthand for $\mathbb{P}(\{2\})$.
- P is determined by $(\mathbb{P}({\{\omega\}}), \forall \omega \in \Omega)$. (eg unfair dice)

Ω uncountable

- For example $\Omega = [0, 1]$. Want to choose a real number, all equally likely.
- If $\mathbb{P}(\{0\}) = \alpha > 0$, then

$$
\mathbb{P}\left(\left\{0,1,\frac{1}{2},\ldots,\frac{1}{n}\right\}\right) = (n+1)\alpha
$$

 $\check{\ll}$ if *n* large as $\mathbb{P} > 1$.

- So $\mathbb{P}({0}) = 0$, or $\mathbb{P}({0})$ is undefined.
- What about $\mathbb{P}(\{x : x \leq \frac{1}{3}\})$ $\frac{1}{3}\})$? - ? "Add up" all $\mathbb{P}(\lbrace x \rbrace)$ for $x \leq \frac{1}{3}$

Example. $\Omega = \{f : \text{continuous on } [0,1] \to \mathbb{R}, f(0) = 1\}.$ What is $\mathbb{P}(\text{differentiable})$?

 $\frac{1}{3}$.

1.1 From the axioms

• $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$. *Proof.* A, A^c are disjoint. $A \cup A^c = \Omega$ and hence

$$
\mathbb{P}(A) + \mathbb{P}(A^c) \stackrel{P3}{=} \mathbb{P}(\Omega) \stackrel{P2}{=} 1
$$

 \Box

- $\mathbb{P}(\emptyset) = 0.$
- If $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B).$

1.2 Examples of Probability Spaces

 Ω finite, $\Omega = {\omega_1, \ldots, \omega_n}$, $\mathcal{F} =$ all subsets uniform choice (equally likely).

$$
\mathbb{P}: \mathcal{F} \to [0,1], \quad \mathbb{P}(A) = \frac{|A|}{|\Omega|}.
$$

In particular:

$$
\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|} \ \forall \ \omega \in \Omega.
$$

Example 1. Choosing without replacement n indistinguishable marbles labelled $\{1, \ldots, n\}$. Pick $k \leq n$ marbles uniformly at random. Here:

$$
\Omega = \{ A \subseteq \{1, \dots, n\} : |A| = k \} \qquad |\Omega| = \binom{n}{k}
$$

Example 2. Well-shuffled deck of cards. Uniformly chosen permutation of 52 cards. $\Omega = \{\text{all permutation of } 52 \text{ cards}\}\qquad |\Omega| = 52!$ P(first three cards have the same suit) = $\frac{52 \times 12 \times 11 \times 49!}{52!} = \frac{22}{42!}$ 425 Note: $=\frac{12}{51} \times \frac{11}{50}$.

Start of lecture 2 Example 3 (Coincident Birthdays). n people. What is the probability that at least two share a birthday? Assumptions:

- No leap years! (365 days)
- All birthdays equally likely.

Now note that

so

$$
\Omega = \{1, \dots, 365\}^n \qquad \mathcal{F} = \mathcal{P}(\Omega)
$$

\n
$$
A = \{\text{at least 2 people share a birthday}\}
$$

\n
$$
A^c = \{\text{all } n \text{ birthdays different}\}
$$

\n
$$
\mathbb{P}(A^c) = \frac{|A^c|}{|\Omega|} = \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}
$$

\n
$$
\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}
$$

\n
$$
\begin{cases} n = 22: \quad \mathbb{P}(A) \approx 0.476 \\ n = 23: \quad \mathbb{P}(A) \approx 0.507 \end{cases}
$$

\n66: $\mathbb{P}(A) = 1$.

 $n \geq 36$

1.3 Choosing uniformly from infinite countable set

(For example $\Omega = \mathbb{N}$ or $\Omega = \mathbb{Q} \cap [0,1]$) Suppose possible, then

• $\mathbb{P}(\{\omega\}) = \alpha > 0 \ \forall \ \omega \in \Omega$. Then

$$
\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} \alpha = \infty \quad \text{ } \not\approx
$$

• $\mathbb{P}(\{\omega\})=0 \ \forall \ \omega \in \Omega$. Then

$$
\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} 0 = 0 \qquad \text{(*)}
$$

Note possible, but still, there exist lots of interesting probability measures of N!

1.4 Combinatorial Analysis

Subsets: Ω finite. $|\Omega| = n$. Question: How many ways to *partition* Ω into k disjoint subsets $\Omega_1, \ldots, \Omega_k$ with $|\Omega_i| = n_i$

(with
$$
\sum_{i=1}^{k} n_i = n
$$
)?
\n
$$
M = {n \choose 1} {n - n_1 \choose n_2} {n - n_1 - n_2 \choose n_3} \cdots {n - (n_1 + \cdots + n_{k-1}) \choose n_k}
$$
\n
$$
= \frac{n!}{n_1! (n - n_1)!} \times \frac{(n - n_1)!}{n_2! (n - n_1 - n_2)!} \times \cdots \times \frac{[n - (n_1 + \cdots + n_{k-1})]!}{n_k! 0!}
$$
\n
$$
= \frac{n!}{n_1! n_2! \cdots n_k!}
$$
\n
$$
=: {n \choose n_1, n_2, \ldots, n_k}
$$

Key sanity check: Does ordering of subsets matter? For example, do we have

$$
[\Omega_2 = \{3, 4, 7\}, \Omega_3 = \{1, 5, 8\}] \stackrel{\text{different}}{=} [\Omega_2 = \{1, 5, 8\}, \Omega_3 = \{3, 4, 7\}]?
$$

Yes!

Random Walks

$$
\Omega = \{(X_0, X_1, \dots, X_n) : X_0 = 0, |X_k - X_{k-1}| = 1, k = 1, \dots, n\} \qquad |\Omega| = 2^n.
$$

Could ask: $\mathbb{P}(X_n = 0)$?

$$
\mathbb{P}(X_n = n) = \frac{1}{2^n}
$$

$$
\mathbb{P}(X_n = 0) = 0 \quad \text{if } n \text{ is odd}
$$

If \boldsymbol{n} is even?

Idea - Choose $\frac{n}{2}$ ks for $X_k = X_{k-1} + 1$ and the rest $X_k = X_{k-1} - 1$. So

$$
\mathbb{P}(X_n = 0) = 2^{-n} \binom{n}{n/2}
$$

$$
= \frac{n!}{2^n \left[\left(\frac{n}{2} \right)! \right]^2}
$$

Question: What happens when n is large?

Stirling's Formula

Notation. (a_n) , $(b_n 0$ two sequences.

Say $a_n \sim b_n$ as $n \to \infty$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$. For example, $n^2 + 5n + \frac{6}{n} \sim n^2$. Non-example: $\exp\left(n^2+5n+\frac{6}{n}\right)$ $\frac{6}{n}$ \neq exp(n²).

 $\sqrt{2\pi}n^{n+1/2}e^{-n}$

Theorem (Stirling). as $n \to \infty$. Weaker version:

 $log(n!) \sim n log n$.

 $n! \sim$

Proof (weaker version).

Start of lecture 3

$$
\log(n!) = \log 2 + \log 3 + \cdots + \log n.
$$

Hence $log(n!) \sim n log n$.

Key idea: Sandwiching between lower/upper integrals. Useful:

- $\log x$ is increasing
- \bullet log x has nice integral!

 \Box

(Ordered) Compositions

A composition of m with k parts is sequence (m_1, \ldots, m_k) of non-negative integers with

$$
m_1+\cdots+m_k=m.
$$

For example, $3+0+1+2=6$. Bijection between compositions and sequences of m stars and $k-1$ dividers (stars and bars). So number of compositions is $\binom{m+k-1}{m}$. Comments: Q11 on example sheet 1.

Properties of Probability Measures

 $(\Omega, \mathcal{F}, \mathbb{P}) \leftarrow$ Probability space

• P1:

$$
\mathbb{P} : \mathcal{F} \to [0,1]
$$

- P2: $\mathbb{P}(\Omega) = 1$.
- P3:

$$
\mathbb{P}\left(\bigcup_{n\geq 1} A_n\right) = \sum_{n\geq 1} \mathbb{P}(A_n)
$$

 $(A_n)_{n\geq 1}$ disjoint. "Countable additivity".

(1) Countable sub-additivity

 $(A_n)_{n>1}$ sequence of events in F. Then

$$
\mathbb{P}\left(\bigcup_{n\geq 1} A_n\right) \leq \sum_{n\geq 1} \mathbb{P}(A_n).
$$

Intuition: this sum can "double count" some sub-events.

Proof. Idea: rewrite $\bigcup_{n\geq 1} A_n$ as a *disjoint* union. Define $B_1 = A_1$ and $B_n = A_n \setminus (A_1 \cup$ $\cdots \cup A_{n-1}$ for $n \geq 2$ (which is in F by example sheet). So

- $\bullet \bigcup_{n\geq 1} B_n = \bigcup_{n\geq 1} A_n$
- $(B_n)_{n>1}$ disjoint (by construction)
- $B_n \subseteq A_n \implies \mathbb{P}(B_n) \leq \mathbb{P}(A_n)$ (by example sheet)

Hence

$$
\mathbb{P}\left(\bigcup_{n\geq 1} A_n\right) = \mathbb{P}\left(\bigcup_{n\geq 1} B_n\right) = \sum_{n\geq 1} \mathbb{P}(B_n) \leq \sum_{n\geq 1} \mathbb{P}(A_n).
$$

 \Box

(1) Continuity

 $(A_n)_{n\geq 1}$ is increasing sequence of events in F i.e. $A_n \subseteq A_{n+1}$. Then $\mathbb{P}(A_n) \leq \mathbb{P}(A_{n+1})$. So $\mathbb{P}(A_n)$ converges as $n \to \infty$. (Because bounded and increasing.) In fact, $\lim_{n\to\infty} \mathbb{P}(A_n)$ $\mathbb{P}\left(\bigcup_{n\geq 1}A_n\right)$.

Proof. Re-use the B_n s!

- $\bigcup_{k=1}^{n} B_k = A_n$ (disjoint union)
- $\bullet\ \bigcup_{n\geq 1}B_n=\bigcup_{n\geq 1}A_n$

$$
\mathbb{P}(A_n) = \sum_{k=1}^n \mathbb{P}(B_k) \to \sum_{k \ge 1} \mathbb{P}(B_k)
$$

$$
\mathbb{P}\left(\bigcup_{n \ge 1} A_n\right) = \mathbb{P}\left(\bigcup_{n \ge 1} B_n\right) = \sum_{n \ge 1} \mathbb{P}(B_n)
$$

 \Box

Try Q6.

(3) Inclusion-Exclusion Principle

Background: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$. Similarly: for $A, B, C \in \mathcal{F}$

 $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(C \cap A) + \mathbb{P}(A \cap B \cap C).$

Theorem (Inclusion Exclusion Principle). Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$. Then: $\mathbb{P}^{\binom{n}{n}}$ $i=1$ A_i \setminus $=\sum_{n=1}^{\infty}$ $i=1$ $\mathbb{P}(A_i)$ – \sum $1 \le i_1 < i_2 \le n$ $\mathbb{P}(A_{i_1} \cap A_{i_2}) + \sum$ $1 \le i_1 < i_2 < i_3 \le n$ $\mathbb{P}(A_{i_1} \cap A_{i_2} \cap A_{i_3})$ $-\cdots+(-1)^{n+1}\mathbb{P}(A_1\cap\cdots\cap A_n)$

Or, abbreviated:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{\substack{I \subset \{1, \dots, n\} \\ I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_i\right)
$$

Start of lecture 4

Proof. Use induction $n^{-1} \mapsto n$. For $n = 2$, check Example Sheet 1, Q4(e). For the inductive step:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \cup A_{n}\right)
$$

$$
= \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \cap A_{n}\right)
$$

Idea:

$$
\left(\bigcup_{i=1}^{n-1} A_i\right) \cap A_n = \bigcup_{i=1}^{n-1} (A_i \cap A_n)
$$

$$
\implies \bigcap_{i \in J} (A_i \cap A_n) = \bigcap_{i \in J \cup \{n\}} A_i
$$

 $\mathbb{P}^{\binom{n}{n}}$ $i=1$ A_i \setminus $=$ \sum $J\subset \{1,...,n-1\}$ $J \neq \emptyset$ $(-1)^{|J|+1}\mathbb{P}\left(\bigcap\right)$ i∈J A_i \setminus $+ \mathbb{P}(A_n) - \sum$ $J\subset \{1,...,n-1\}$ $J \neq \emptyset$ $(-1)^{|J|+1} \mathbb{P}$ $\sqrt{ }$ $\overline{1}$ \cap $i \in J \cup \{n\}$ A_i \setminus $\overline{1}$ $=$ \sum I⊂{1,...,n−1} $I \neq \emptyset$ $(-1)^{|I|+1}\mathbb{P}\left(\bigcap\right)$ i∈I A_i \setminus $+ \mathbb{P}(A_n) + \sum$ $I\subset\{1,\ldots,n\}$ $n \in I, |I| \geq 2$ $(-1)^{|I|+1}\mathbb{P}\left(\bigcap\right)$ i∈I A_i \setminus $=$ Σ $I\subset \{1,\ldots,n\}$ I̸=∅ $(-1)^{|I|+1}\mathbb{P}\left(\bigcap\right)$ i∈I A_i \setminus

 \Box

Where $J \cup \{n\} \mapsto I$, so $-(-1)^{|J|+1} \mapsto (-1)^{|I|}$.

Bonferroni Inequalities

 $(J \subset \{1, \ldots, n-1\}).$

Question: What if you truncate Inclusion-Exclusion Principle? $\overline{\text{Recall: }\mathbb{P}}(\cup A_i) \leq \sum \mathbb{P}(A_i) \ (union\ bound).$

• When r is even:

$$
\mathbb{P}\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{k=1}^r (-1)^{k+1} \sum_{i_1 < \dots < i_k} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})
$$

• When r is odd:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) \ge \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_1 < \cdots < i_k} \mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k})
$$

Question: When is it good to truncate at for example $r = 2$? $\overline{Proof.}$ Induction on r and n. For r odd:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right)
$$
\n
$$
\leq \sum_{\substack{J \subset \{1, \ldots, n-1\} \\ I \leq |J| \leq r}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}(A_{n}) - \sum_{\substack{J \subset \{1, \ldots, n-1\} \\ 1 \leq |J| \leq r-1}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J \cup \{n\}} A_{i}\right)
$$
\n
$$
\leq \sum_{\substack{I \subset \{1, \ldots, n\} \\ 1 \leq |I| \leq r}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)
$$

r even is similar.

Counting with Inclusion-Exclusion Principle

Uniform probability measure on Ω , $|\Omega| < \infty$.

$$
\mathbb{P}(A) = \frac{|A|}{|\Omega|} \ \forall \ A \subseteq \Omega.
$$

Then $\forall A_1, \ldots, A_n \subseteq \Omega$.

$$
|A_1 \cup \dots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{i_1 < \dots < i_k} |A_{i_1} \cap \dots \cap A_{i_k}|
$$

(and similar for Bonferroni Inequalities).

 \Box

Example 1. Surjections $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$

$$
\Omega = \{f : \{1, \ldots, n\} \to \{1, \ldots, m\}\}
$$
 all functions

 $A = \{f : \text{Im}(f) = \{1, \ldots, m\}\}\$ all surjections

 $\forall i \in \{1, \ldots, m\}$. Define

$$
B_i = \{ f \in \Omega : i \notin \text{Im}(f) \}.
$$

Key observations:

- $A = B_1^c \cap \cdots \cap B_m^c = (B_1 \cup \cdots \cup B_m)^c$.
- $|B_{i_1} \cap \cdots \cap B_{i_k}|$ is nice to calculate! In particular, it is

$$
|\{f \in \Omega : i_1, \dots, i_k \notin \operatorname{Im}(f)\}| = (m - k)^n
$$

.

Inclusion-Exclusion Principle implies:

$$
|B_1 \cup \cdots \cup B_m| = \sum_{k=1}^m (-1)^{k+1} \sum_{i_1 < \cdots < i_k} |B_{i_1} \cap \cdots \cap B_{i_k}|
$$

=
$$
\sum_{k=1}^m (-1)^{k+1} {m \choose k} (m-k)^n
$$

 $|A| = m^n$ – previous expression $=\sum_{m=1}^{m}$ $k=0$ $(-1)^k\binom{m}{k}$ k \int $(m-k)^n$

Start of lecture 5 Example 2. Derangements (Permutation with no fixed points)

$$
\Omega = \{\text{permutations of } \{1, \ldots, n\}\}\
$$

$$
D = \{ \sigma \in \Omega : \sigma(i) \neq i \,\forall \, i = 1, \dots, n \}
$$

Question: Is $\mathbb{P}(D) = \frac{|D|}{|\Omega|}$ large or small (when $n \to \infty$)?

$$
\forall i \in \{1, \ldots, n\} : A_i = \{\sigma \in \Omega : \sigma(i) = i\}.
$$

• $D = A_1^c \cap \cdots \cap A_n^c = (\bigcup_{i=1}^n A_i)^c$.

$$
\bullet \ \mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = \frac{(n-k)!}{n!}
$$

Now Inclusion-Exclusion Principle implies:

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{i_1 < \dots
$$
= \sum_{k=1}^{n} (-1)^{k+1} {n \choose k} \frac{(n-k)!}{n!}
$$
$$

So

$$
\mathbb{P}(D) = 1 - \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right)
$$

$$
= 1 - \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!}
$$

$$
= \sum_{k=1}^{n} \frac{(-1)^k}{k!}
$$

And as $n \to \infty$,

$$
\mathbb{P}(D) \to \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = e^{-1} \approx 0.37
$$

Comments

What if instead we have

$$
\Omega' = \{f : \{1, ..., n\} \to \{1, ..., n\}\}.
$$

$$
D = \{f \in \Omega' : f(i) \neq i \,\forall \, i = 1, ..., n\}.
$$

Then

$$
\mathbb{P}(D) = \frac{(n-1)^n}{n^n} = \left(1 - \frac{1}{n}\right)^n
$$

which also approaches e^{-1} as $n \to \infty$.

- Would be nice to write as a product of probabilities, i.e. $\left(\frac{n-1}{n}\right)$ $\left(\frac{-1}{n}\right)^n$, and we will be allowed to do this soon.
- $f(i)$ is a random quantity associated to Ω . (Will be allowed to study $f(i)$ as a random variable.)
- $\bullet~$ Are allowed to toss a fair coin n times.

$$
\Omega = \{H, T\}^n
$$

Independence

 $(\Omega, \mathcal{F}, \mathbb{P})$ as before.

Definition. • Events $A, B \in \mathcal{F}$ are *independent* if

$$
\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)
$$

(denoted $A \perp\!\!\!\perp B$).

• A countable collection of events (A_n) is independent if \forall distinct i_1, \ldots, i_k we have:

$$
\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = \prod_{j=1}^k \mathbb{P}(A_{i_j}).
$$

Note. "Pairwise independence" does not imply independence.

Example. $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}, \mathbb{P}(\{\omega\}) = \frac{1}{4} \forall \omega \in \Omega$. Now define $A = {\rm first\,\, coin\,\, in}\,\, H = \{(H,H),(H,T)\}$ $B =$ second coin $H = \{(H,H), (T,H)\}$ $C = \text{same outcome} = \{(H, H), (T, T)\}.$

Then we have that

$$
\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{2} \qquad A \cap B = A \cap C = B \cap C = \{(H, H)\}\
$$

$$
\implies \mathbb{P}(A \cap B) = \mathbb{P}(A \cap C) = \mathbb{P}(B \cap C) = \frac{1}{4}
$$

so pairwise independent, however

$$
\mathbb{P}(A \cap B \cap C) = \frac{1}{4} \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)
$$

so the events are not independent.

 \sim \prime

Example(s) of Independence

• Define

$$
\Omega' = \{f : \{1, ..., n\} \to \{1, ..., n\}\}.
$$

$$
A_i := \{f \in \Omega' : f(i) = i\}.
$$

$$
\mathbb{P}(A_i) = \frac{n^{n-1}}{n^n} = \frac{1}{n}
$$

$$
\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{n^{n-k}}{n^n} = \frac{1}{n^k} = \prod_{j=1}^k \mathbb{P}(A_{i_j})
$$

Here: (A_i) independent events.

• Define

$$
\Omega = \{\sigma : \text{permutation of}\{1, ..., n\}\}\
$$

$$
A_i = \{\sigma \in \Omega : \sigma(i) = i\}
$$

For $i \neq j$,

$$
\mathbb{P}(A_i \cap A_j) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)} \neq \mathbb{P}(A_i)\mathbb{P}(A_j)
$$

So here, (A_i) are not independent.

Properties

Claim 1. If A is independent of B, then A is also independent of B^c .

Proof.

$$
\mathbb{P}(A \cap B^c) + \mathbb{P}(A) - \mathbb{P}(A \cap B)
$$

= $\mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$
= $\mathbb{P}(A)[1 - \mathbb{P}(B)]$
= $\mathbb{P}(A)\mathbb{P}(B^c)$

Claim 2. A is independent of $B = \Omega$ and of $C = \phi$.

Proof.

$$
\mathbb{P}(A \cap \Omega) = \mathbb{P}(A) = \mathbb{P}(A)\mathbb{P}(\Omega).
$$

And by claim 1, this implies that $A \perp \!\!\!\perp \emptyset$.

As an exercise, one can further prove that if $\mathbb{P}(B) = 0$ or 1, then A is independent of B.

Conditional Probability

 $(\Omega, \mathcal{F}, \mathbb{P})$ as before.

Consider $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0, A \in \mathcal{F}$.

Definition. The *conditional probability of A given B* is

$$
P(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

"The probability of A if we know B happened". (for example revealing info in succession).

Example. If A, B independent,

$$
\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).
$$

"Knowing whether B happened doesn't affect the probability of A."

Start of lecture 6 \Box

 \Box

Properties

- $\mathbb{P}(A | B) \geq 0$
- $\mathbb{P}(B | B) = \mathbb{P}(\Omega | B) = 1.$
- (A_n) disjoint events $\in \mathcal{F}$.

Claim.
$$
\mathbb{P}\left(\bigcup_{n\geq 1}A_n \mid B\right) = \sum_{n\geq 1}\mathbb{P}(A_n \mid B).
$$

Proof.

$$
\mathbb{P}\left(\bigcup_{n\geq 1} A_n | B\right) = \frac{\mathbb{P}\left(\left(\bigcup_{n\geq 1} A_n\right) \cap B\right)}{\mathbb{P}(B)}
$$

$$
= \frac{\mathbb{P}\left(\bigcup_{n\geq 1} (A_n \cap B)\right)}{\mathbb{P}(B)}
$$

$$
= \frac{\sum_{n\geq 1} \mathbb{P}(A_n \cap B)}{\mathbb{P}(B)}
$$

$$
= \sum_{n\geq 1} \mathbb{P}(A | B)
$$

 \Box

 $\mathbb{P}(\bullet | B)$ is a function from $\mathcal{F} \to [0, 1]$ that satisfies the rules to be a probability measure Ω. Consider $Ω' = B$ (especially in finite / countable setting), $F' = P(B)$. Then $(\Omega', \mathcal{F}', \mathbb{P}(\bullet | B))$ also satisfies the rules to be a probability measure on Ω' .

$$
\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B \mid A)
$$

 $\mathbb{P}(A_1 \cap A_2 \cap \cdots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1 \cap A_2) \cdots \mathbb{P}(A_n \mid A_1 \cap \cdots \cap A_{n-1}).$

Example. Uniform permutation $(\sigma(1), \sigma(2), \ldots, \sigma(n)) \in \sum_n$.

Claim.

$$
\mathbb{P}(\sigma(k) = i_k | \sigma(i) = i, \dots, \sigma(k-1) = i_{k-1}) = \begin{cases} 0 & \text{if } i_k \in \{i_1, \dots, i_{k-1}\} \\ \frac{1}{n-k+1} & \text{if } i_k \notin \{i_1, \dots, i_{k-1}\} \end{cases}
$$

Proof.

$$
\mathbb{P}(\sigma(k) = i_k | \sigma(i) = i, ..., \sigma(k-1) = i_{k-1}) = \frac{\mathbb{P}(\sigma(i) = i, ..., \sigma(k) = i_k)}{\mathbb{P}(\sigma(i) = i_1, ..., \sigma(k-1) = i_{k-1})}
$$

$$
= \frac{0 \text{ or } \frac{(n-k)!}{n!}}{\frac{(n-k+1)!}{n!}}
$$

$$
= \frac{(n-k)!}{(n-k+1)!}
$$

$$
= \frac{1}{n-k+1}
$$

Law of Total Probability and Bayes' Formula

Definition. $(B_1, B_2, ...) \subset \Omega$ is a partition of Ω if:

$$
\bullet \ \Omega = \bigcup_{n \geq 1} B_n
$$

• (B_n) are disjoint

Theorem. (B_n) a finite countable partition of Ω with $B_n \in \mathcal{F}$ and for all $n \mathbb{P}(B_n)$ 0, then for all $A \in \mathcal{F}$:

$$
\mathbb{P}(A) = \sum_{n\geq 1} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n).
$$

(Sometimes known as "Partition Theorem").

Proof. Note that $\bigcup_{n\geq 1} (A \cap B_n) = A$.

$$
\mathbb{P}(A) = \sum_{n\geq 1} \mathbb{P}(A \cap B_n) = \sum_{n\geq 1} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n).
$$

 \Box

Theorem (Bayes' Formula).

$$
\mathbb{P}(B_n \mid A) = \frac{\mathbb{P}(A \cap B_n)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \mid B_n)\mathbb{P}(B_n)}{\sum_{m \geq 1} \mathbb{P}(A \mid B_m)\mathbb{P}(B_m)}.
$$

Rephrasing for $n = 2$:

$$
\mathbb{P}(B \mid A)\mathbb{P}(A) = \mathbb{P}(A \mid B)\mathbb{P}(B) = \mathbb{P}(A \cap B).
$$

This allows us for example to calculate $\mathbb{P}(B \mid A)$ given $\mathbb{P}(A), \mathbb{P}(A \mid B)$ and $\mathbb{P}(B)$.

Example 1. Lecture course: $\frac{2}{3}$ probability that it is a weekday, and $\frac{1}{3}$ probability that it is a weekend.

$$
\mathbb{P}(\text{forget notes} \mid \text{weekday}) = \frac{1}{8}
$$

$$
\mathbb{P}(\text{forget notes} \mid \text{weekend}) = \frac{1}{2}.
$$

What is $\mathbb{P}(\text{weekend} \mid \text{forget notes})$?

 $B_1 = \{\text{weekend}\}, \qquad B_2 = \{\text{weekend}\}, \qquad A - \{\text{forget notes}\}.$

Law of Total Probability:

$$
\mathbb{P} (=\frac{2}{3} \times \frac{1}{8} + \frac{1}{3} \times \frac{1}{2} = \frac{1}{12} + \frac{1}{6} = \frac{1}{4}.
$$

Bayes':

$$
\mathbb{P}(B_2 \mid A) = \frac{\frac{1}{3} \times \frac{1}{2}}{\frac{1}{4}} = \frac{2}{3}.
$$

Example 2. Disease testing: probability p that you are infected, probability $1 - p$ that you are not.

P(tests positive | infected) = $1 - \alpha$

P(test positive | not infected) = β

Ideally both α , β are small (and ideally p is small).

 \mathbb{P} (infected | test positive).

Law of Total Probability:

$$
\mathbb{P}(\text{test positive}) = p(1 - \alpha) + (1 - p)\beta.
$$

Bayes':

$$
\mathbb{P}(\text{infected } | \text{ positive}) = \frac{p(1-\alpha)}{p(1-\alpha) + (1-p)\beta}.
$$

Suppose $p \ll \beta$. Then

$$
p(1-\alpha) \ll (1-p)\beta
$$

Then

$$
\mathbb{P}(\text{infected } | \text{ positive}) \sim \frac{p(1-\alpha)}{(1-p)\beta}
$$

Start of

lecture 7 **Example 3** (Simpson's Paradox).

$$
A = \{\text{change colour}\}, \qquad B = \{\text{blue}\} \qquad B^c = \{\text{green}\}
$$
\n
$$
C = \{\text{Cambridge}\} \qquad C^c = \{\text{Oxford}\}
$$
\n
$$
\mathbb{P}(A \mid B \cap C) > \mathbb{P}(A \mid B^c \cap C)
$$
\n
$$
\mathbb{P}(A \cap B \cap C^c) > \mathbb{P}(A \mid B^c \cap C^c)
$$
\n
$$
\implies \mathbb{P}(A \mid B) > \mathbb{P}(A \mid B^c)
$$

20

Law of Total Probability for Conditional Probabilities

Suppose C_1, C_2, \ldots a partition of B .

$$
\mathbb{P}(A | B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

=
$$
\frac{\mathbb{P}(A \cap (\bigcup_n C_n))}{\mathbb{P}(B)}
$$

=
$$
\frac{\mathbb{P}(\bigcup_n (A \cap C_n))}{\mathbb{P}(B)}
$$

=
$$
\frac{\sum_n \mathbb{P}(A \cap C_n)}{\mathbb{P}(B)}
$$

=
$$
\frac{\sum_n \mathbb{P}(A | C_n) \mathbb{P}(C_n)}{\mathbb{P}(B)}
$$

=
$$
\sum_n \mathbb{P}(A | C_N) \frac{\mathbb{P}(B \cap C_n)}{\mathbb{P}(B)}
$$

=
$$
\sum_n \mathbb{P}(A | C_n) \frac{\mathbb{P}(C_n)}{\mathbb{P}(B)}
$$

Conclusion:

$$
\mathbb{P}(A \mid B) = \sum_{n} \mathbb{P}(A \mid C_n)\mathbb{P}(C_n \mid B)
$$

Special case:

- \bullet If all $\mathbb{P}(C_n)$ are equal, then all $\mathbb{P}(C_n \mid B)$ are equal too.
- If $\mathbb{P}(A | C_n)$ s all equal, then $\mathbb{P}(A | B) = \mathbb{P}(A | C_n)$ also.

Example. Uniform permutation $(\sigma(1), \ldots, \sigma(52)) \in \sum_{52}$ ("well-shuffled cards"). $\{1, 2, 3, 4\}$ are *aces*. What is $\mathbb{P}(\{\sigma(1), \sigma(2) \text{ both aces}\})$?

$$
A = \{\sigma(1), \sigma(2) \text{ aces}\}, \qquad B = \{\sigma(1) \text{ is ace}\} = \{\sigma(1) \le 4\}
$$

$$
C_1 = \{\sigma(1) = 1\}, \dots, C_4 = \{\sigma(1) = 4\}
$$

Note.
$$
\bullet \mathbb{P}(A | C_i) = \mathbb{P}(\sigma(2) \in \{1, 2, 3, 4\} | \sigma(1) = i)
$$
 $i \le 4$
 $= \frac{3}{51}$
 $\bullet \mathbb{P}(C_1) = \cdots = \mathbb{P}(C_4) = \frac{1}{52}$

So conclude:

$$
\mathbb{P}(A \mid B) = \frac{3}{51}
$$

$$
\mathbb{P}(A) = \mathbb{P}(B) \times \mathbb{P}(A \mid B) = \frac{4}{52} \times \frac{3}{51}
$$

2 Discrete Random Variables

Motivation: Roll two dice.

$$
\Omega = \{1, \ldots, 6\}^2 = \{(i, j) : 1 \le i, j \le 6\}
$$

Restrict attention to first dice, for example $\{(i, j) : i = 3\}$, or sum of dice values for example $\{(i, j) : i + j = 8\}$, or max of dice, for example $\{(i, j) : i, j \le 4, i \text{ or } j = 4\}$. Goal: "Random real-valued measurements".

Definition. A *discrete random variable X* on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ such that

- $\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}$
- Im (X) is finite or countable (subset of \mathbb{R})

If Ω finite or countable and $\mathcal{F} = \mathcal{P}(\Omega)$ then both bullet points hold automatically.

Definition. The *probability mass function* of discrete random variable X is the function $p_X : \mathbb{R} \to [0,1]$ given by

$$
p_X(x) = \mathbb{P}(X = x) \,\forall \, x \in \mathbb{R}
$$

Note. • if $x \notin \text{Im}(X)$ then

•

$$
p_X(x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}) = \mathbb{P}(\emptyset) = 0
$$

$$
\sum_{x \in \text{Im}(X)} P_X(x) = \sum_{x \in \text{Im}(X)} \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})
$$

$$
= \mathbb{P}\left(\bigcup_{x \in \text{Im}(x)} \{\omega \in \Omega : X(\omega) = x\}\right)
$$

$$
= \mathbb{P}(\Omega)
$$

$$
= 1
$$

Example. Event $A \in \mathcal{F}$, define $\mathbb{1}_A : \Omega \to \mathbb{R}$ by

$$
\mathbb{1}_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}
$$

("Indicator function of A") $\mathbb{1}_A$ is a discrete random variable with Im = {0, 1}. Probability mass function:

$$
\mathbb{P}_{1_A}(1) = \mathbb{P}(1_A = 1) = \mathbb{P}(A)
$$

$$
\mathbb{P}_{1_A}(0) = \mathbb{P}(1_A = 0) = 1 - \mathbb{P}(A)
$$

$$
\mathbb{P}_{1_A}(x) = 0 \,\forall x \notin \{0, 1\}.
$$

This encodes "did A happen?" as a real number.

Remark. Given a probability mass function p_X , we can always construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable defined on it with this probability mass function.

•
$$
\Omega = \text{Im}(X) \text{ i.e. } \{x \in \mathbb{R} : p_X(x) > 0\}.
$$

- $\mathcal{F} = \mathcal{P}(\Omega)$
- $\mathbb{P}(\{x\}) = p_X(x)$ and extend to all $A \in \mathcal{F}$.

Start of

lecture 8 Discrete Probability Distributions

 Ω finite.

1. Bernoulli Distribution

("(biased) coin toss"). $X \sim \text{Bern}(p), p \in [0, 1].$ $Im(x) = \{0, 1\}$ $p_X(1) = \mathbb{P}(X = 1) = p$ $p_X(0) = \mathbb{P}(X = 0) = 1 - p.$

Key example: $\mathbb{1}_A \sim \text{Bern}(p)$ with $p = \mathbb{P}(A)$.

2. Binomial Distribution

 $X \sim Bin(n, p), n \in \mathbb{Z}^+, p \in [0, 1].$ ('Toss coin n times, count number of heads".)

Im(X) = {0, 1, ..., n}

$$
p_X(k) = \mathbb{P}(X = k) = {n \choose k} p^k (1-p)^{n-k}
$$

check:

$$
\sum_{k=0}^{n} p_X(k) = (p + (1 - p))^n = 1
$$

More than one Random Variable

Motivation: Doll a dice. Outcome $X \in \{1, 2, ..., 6\}$. Events:

$$
A = \{1 \text{ or } 2\}, \qquad B = \{1 \text{ or } 2 \text{ or } 3\}, \qquad C = \{1 \text{ or } 3 \text{ or } 5\}.
$$

$$
\mathbb{1}_A \sim \text{Bern}\left(\frac{1}{3}\right), \qquad \mathbb{1}_B \sim \text{Bern}\left(\frac{1}{2}\right), \qquad \mathbb{1}_C \sim \text{Bern}\left(\frac{1}{2}\right)
$$

Note. $\mathbb{1}_A \leq \mathbb{1}_B$ for all outcomes, but $\mathbb{1}_A \leq \mathbb{1}_C$ for outcomes is *false*.

Definition. X_1, \ldots, X_n discrete random variables. Say X_1, \ldots, X_n are *independent* if

$$
\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n) \qquad \forall x_1, \dots, x_n \in \mathbb{R}
$$

(suffices to check $\forall x_i \in \text{Im}(X_i)$).

Example. X_1, \ldots, X_n independent random variables each with the Bernoulli (p) distribution. Study $S_n = X_1 + \cdots + X_n$. Then

$$
\mathbb{P}(S_n = k) = \sum_{\substack{X_1 + \dots + X_n = k \\ X_i \in \{0, 1\}}} \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)
$$

$$
= \sum_{\substack{X_1 + \dots + X_n = k \\ X_1 + \dots + X_n = k}} \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)
$$

$$
= \sum_{\substack{X_1 + \dots + X_n = k \\ X_1 + \dots + X_n = k}} p^{\{i : x_i = 1\}} (1 - p)^{\{i : x_i = 0\}}
$$

$$
= \sum_{\substack{X_1 + \dots + X_n = k \\ X_1 + \dots + X_n = k}} p^k (1 - p)^{n - k}
$$

$$
= {n \choose k} p^k (1 - p)^{n - k}
$$

so $S_n \sim \text{Bin}(n, k)$.

Example (Non-example). $(\sigma(1), \sigma(2), \ldots, \sigma(n))$ uniform in \sum_n .

Claim. $\sigma(1)$ and $\sigma(2)$ are not independent.

Suffices to find i_1 , i_2 such that

$$
\mathbb{P}(\sigma(1) = i, \sigma(2) = i_2) \neq \mathbb{P}(\sigma(1) = i_1)\mathbb{P}(\sigma(2) = i_2)
$$

for example

$$
\mathbb{P}(\sigma(1) = 1, \sigma(2) = 1) = 0 \neq \frac{1}{n} \times \frac{1}{n} = \mathbb{P}(\sigma(1) = 1)\mathbb{P}(\sigma(2) = 1)
$$

Consequence of definition

 X_1, \ldots, X_n independent then $\forall A_1, \ldots, A_n \subset \mathbb{R}$ countable, then

$$
\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \cdots \mathbb{P}(X_n \in A_n)
$$

 $\Omega=\mathbb{N}$

"Ways of choosing a random integer"

3. Geometric distribution

("waiting for success")

 $X \sim \text{Geom}(p), p \in (0, 1].$

("Toss a coin with $\mathbb{P}(\text{heads}) = p$ until a head appears. Count how many trials were needed.")

$$
\operatorname{Im}(X) = \{1, 2, \dots\}
$$

 $p_X(k) = \mathbb{P}((k-1)$ failures, then success on k -th $) = (1-p)^{k-1}p$

Check:

$$
\sum_{k\geq 1} (1-p)^{k-1}p = p \sum_{l\geq 0} (1-p)^l = \frac{p}{1-(1-p)} = 1
$$

Note. We could alternatively "count how many failures before a success".

 $Im(Y) = \{0, 1, 2, \dots\}$

$$
p_Y(k) = \mathbb{P}(k \text{ failures, then success on } (k+1)
$$
-th $) = (1-p)^k p$

Check:

$$
\sum_{k\geq 0} (1-p)^k p = 1
$$

4. Poisson Distribution

 $\lambda \in (0,\infty).$

$$
X \sim \text{Po}(\lambda)
$$

$$
\text{Im}(X) = \{0, 1, 2, \dots\}
$$

$$
\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \qquad \forall \ k \ge 0
$$

Note.

$$
\sum_{k\geq 0} \mathbb{P}(X = k) = e^{-k} \sum_{k\geq 0} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1
$$

<u>Motivation</u>: Consider $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$. .image

- Probability of an arrival in each interval is p , independently across intervals.
- Total arrivals is X_n .

$$
\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}
$$

Fix k, let $n \to \infty$:

$$
\mathbb{P}(X_n = k) = \underbrace{\frac{n!}{n^k(n-k)!}}_{\to 1} \times \frac{\lambda^k}{k!} \times \underbrace{\left(1 - \frac{\lambda}{n}\right)^n}_{\to e^{-\lambda}} \times \underbrace{\left(1 - \frac{1}{n}\right)^{-k}}_{\to 1}
$$

so

$$
\mathbb{P}(X_n = k) \to e^{-\lambda} \frac{\lambda^k}{k!}
$$

Start of lecture 9

"Bin $(n, \frac{\lambda}{n})$ converges to Po(λ)". (note the "converges" is not very meaningful).

Expectation

 $(\Omega, \mathcal{F}, \mathbb{P})$ and X a discrete random variable. For now: X only takes non-negative values. " $X \geq 0$ "

ω∈Ω

Definition. The expectation of X (or expected value of mean) is $\mathbb{E}[X] = \sum$ $x\mathbb{P}(X=x)=\sum$ $X(\omega)\mathbb{P}(\{\omega\})$

 $x \in \text{Im}(X)$

"average of values taken by X, weighted by p_X ".

Example 1. X uniform on $\{1, 2, \ldots, 6\}$ (i.e. dice) then

$$
\mathbb{E}[X] = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \dots + \frac{1}{6} \times 6 = 3.5
$$

Note. $\mathbb{E}[X] \notin \text{Im}(X)$.

Example 2. $X \sim \text{Binomial}(n, p)$.

$$
\mathbb{E}[X] = \sum_{k=0}^{n} k \mathbb{P}(X = k) = \sum_{k=0}^{n} k {n \choose k} p^{k} (1-p)^{n-k}
$$

Trick:

$$
k\binom{n}{k} = \frac{k \times n!}{k! \times (n-k)!}
$$

=
$$
\frac{n!}{(k-1)!(n-k)!}
$$

=
$$
\frac{n \times (n-1)!}{(k-1)! \times (n-k)!}
$$

=
$$
n\binom{n-1}{k-1}
$$

$$
\mathbb{E}[X] = n \sum_{k=1}^{n} \binom{n-1}{k-1} p^k (1-p)^{n-k}
$$

=
$$
np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)}
$$

=
$$
np \sum_{l=0}^{n-1} \binom{n-1}{l} p^l (1-p)^{(n-1)-l}
$$

=
$$
np(p + (1-p))^{n-1}
$$

=
$$
np
$$

Note. Would like to say:

$$
\mathbb{E}[\text{Bin}(n, p)] = \mathbb{E}[\text{Bern}(p)] + \cdots + \mathbb{E}[\text{Bern}(p)]
$$

Example 3. $X \sim \text{Poisson}(\lambda)$.

$$
\mathbb{E}[X] = \sum_{k\geq 0} k \mathbb{P}(X = k)
$$

$$
= \sum_{k\geq 0} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}
$$

$$
= \sum_{k\geq 1} e^{-\lambda} \frac{\lambda^k}{(k-1)!}
$$

$$
= \lambda \sum_{k\geq 0} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}
$$

$$
= \lambda \sum_{l\geq 0} e^{-\lambda} \frac{\lambda^l}{l!}
$$

$$
= \lambda
$$

Note. Would like to say

$$
\mathbb{E}[\text{Poisson}(\lambda)] \approx \mathbb{E}\left[\text{Bin}\left(n, \frac{\lambda}{n}\right)\right] = \lambda
$$

Can't say this: not true in general that

$$
\mathbb{P}(X_n = k) \approx \mathbb{P}(\lambda = k) \implies \mathbb{E}[X_n] \approx \mathbb{E}[X]
$$

Example 4. $X \sim$ Geometric (p) . Exercise.

Positive and negative: General X (not necessarily $X \geq 0$).

$$
\mathbb{E}[X] = \sum_{x \in \text{Im}(X)} x \mathbb{P}(X = x)
$$

unless

$$
\sum_{\substack{x>0\\x\in\operatorname{Im}(x)}}x\mathbb{P}(X=x)=+\infty
$$

and

$$
\sum_{\substack{x<0\\x\in\operatorname{Im}(x)}}x\mathbb{P}(X=x)=-\infty
$$

then we say that $\mathbb{E}[X]$ is not defined. Summary:

- both infinite: not defined
- first infinite, second not: $\mathbb{E}[X] = +\infty$
- second infinite, first not: $\mathbb{E}[X] = -\infty$
- \bullet neither infinite: X is *integrable*, i.e.

$$
\sum_{x \in \text{Im}(X)} |x| \mathbb{P}(X = x)
$$

converges.

Note that some people say that in cases 2 and 3, the expectation is undefined.

Example 5. Most examples in the course are integrable except:

• $\mathbb{P}(X = n) = \frac{6}{\pi^2} \times \frac{1}{n^2}$ for $n \geq 1$. (Note $\sum \mathbb{P}(X = n) = 1$). Then

$$
\mathbb{E}[X] = \sum \frac{6}{\pi^2} \times \frac{1}{n} = +\infty
$$

• $\mathbb{P}(X = n) = \frac{3}{\pi^2} \times \frac{1}{n^2}$ for $n \in \mathbb{Z} \setminus \{0\}$, then $\mathbb{E}[X]$ is not defined. ("It's symmetric so $\mathbb{E}[X] = 0$ ["] is considered wrong for us).

Example. $\mathbb{E}[\mathbb{1}_A = \mathbb{P}(A) \text{ Important!}]$

Properties of Expectation

 $(X$ discrete).

(1) If $X \geq 0$, then $\mathbb{E}[X] \geq 0$ with equality if and only $\mathbb{P}(X = 0) = 1$. Why?

$$
\mathbb{E}[X] = \sum_{\substack{x \in \text{Im}(X) \\ x \neq 0}} x \mathbb{P}(X = x)
$$

- (2) If $\lambda, c \in \mathbb{R}$ then:
	- (i) $\mathbb{E}[X + c] = \mathbb{E}[X] + c$
	- (ii) $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$
- (3) (i) X, Y random variables (both integrable) on same probability space.

$$
\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]
$$

(ii) In fact $\lambda, \mu \in \mathbb{R}$

$$
\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]
$$

similarly:

$$
\mathbb{E}[\lambda_1 X_1 + \cdots + \lambda_n X_n] = \lambda_1 \mathbb{E}[X_1] + \cdots + \lambda_n \mathbb{E}[X_n]
$$

Proof of $(3)(ii)$.

$$
\mathbb{E}[\lambda X + \mu Y] = \sum_{\omega \in \Omega} (\lambda X(\omega) + \mu Y(\omega)) \mathbb{P}(\{\omega\})
$$

$$
= \lambda \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) + \mu \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}(\{\omega\})
$$

$$
= \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]
$$

Note that this proof only works for countable Ω , but there is also a proof for general Ω . \Box

Note. Independence is *not* required for linearity of expectation to hold. (This is the name for property $(3)(ii)$.

Start of

lecture 10 Corollary. $X \ge Y$ (meaning $X(\omega) \ge Y(\omega)$ for all $\omega \in \mathbb{R}$) then $\mathbb{E}[X] \ge \mathbb{E}[Y]$.

Proof. $X = (X - Y) + Y$ hence

$$
\mathbb{E}[X] = \mathbb{E}[X - Y] + \mathbb{E}[Y]
$$

but $X - Y \ge 0$ hence $\mathbb{E}[X - Y] \ge 0$. Key Application: Counting problems. $\overline{(\sigma(1), \ldots, \sigma(n))}$ uniform on σ_n .

 $Z = |\{i : \sigma(i) = i\}|$ = number of fixed points

Let $A_i = {\sigma(i) = i}$. (Recall A_i s are not independent) Key step:

$$
Z=\mathbb{1}_{A_1}+\cdots+\mathbb{1}_{A_n}
$$

so

$$
\mathbb{E}[Z] = \mathbb{E}[\mathbb{1}_{A_1} + \dots + \mathbb{1}_{A_n}]
$$

= $\mathbb{E}[\mathbb{1}_{A_1}] + \dots + \mathbb{E}[\mathbb{1}_{A_n}]$
= $\mathbb{P}(A_1) + \dots + \mathbb{P}(A_n)$
= $\frac{1}{n} \times n$
= 1

 $\hfill \square$

Note. Same answer as $\text{Bin}(n, \frac{1}{n})$.

Application: X takes values in $\{0, 1, 2, \dots\}$. **Fact**: $\mathbb{E}[X] = \sum_{k \geq 1} \mathbb{P}(X \geq k)$. *Proof 1*. Write

$$
X = \sum_{k \ge 1} \mathbb{1}_{\left(X \ge k\right)}
$$

Then

$$
\mathbb{E}[X] = \mathbb{E}\left[\sum 1_{(X \ge k)}\right]
$$

$$
= \sum \mathbb{E}[1_{(X \ge k)}]
$$

$$
= \sum \mathbb{P}(X \ge k)
$$

Sanity Check: for example if $X = 7$ then

$$
1_{(X \ge 1)} = \dots = 1_{(X \ge 7)} = 1
$$

$$
1_{(X \ge 8)} = 1_{(X \ge 9)} = \dots = 0
$$

Markov's Inequality

 $X \geq 0$ a random variable. Then $\forall a > 0$:

$$
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}[X]}{a}
$$

Comment: Is $a = \frac{\mathbb{E}[X]}{2}$ $\frac{1}{2}$ useful? Definitely not. Is a is large useful? Maybe. *Proof.* Observe: $X \ge a \mathbb{1}_{\{X \ge a\}}$. Then

$$
\mathbb{E}[X] \ge a \mathbb{E}[\mathbb{1}_{X \ge a}] = a \mathbb{P}(X \ge a)
$$

now just rearrange.

Note that $\mathbb{1}_{(X \ge a)}$ means $X(\omega) \ge a \mathbb{1}_{(X \ge a)}(\omega)$. Check: if $X \in [0, a)$ then RHS = 0, if $X \in [a, \infty)$ then RHS = a.

Note. Also true for continuous random variables (later).

 \Box

Studying $\mathbb{E}[f(X)]$

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Then $f(X)$ is also a *random variable*.

Claim.
$$
\mathbb{E}[f(X)] = \sum_{x \in \text{Im}(X)} f(x)\mathbb{P}(X = x).
$$

Proof. Let

$$
A = \text{Im}(f(X)) = \{ y : y = f(x), x \in \text{Im}(X) \} = \{ f(x) : x \in \text{Im}(X) \}
$$

Start with RHS:

$$
\sum_{x \in \text{Im}(X)} f(x) \mathbb{P}(X = x) = \sum_{y \in A} \sum_{\substack{x \in \text{Im}(X) \\ f(x) = y}} f(x) \mathbb{P}(X = x)
$$

$$
\sum_{y \in A} y \sum_{\substack{x \in \text{Im}(X) \\ f(x) = y}} \mathbb{P}(X = x)
$$

$$
= \sum_{y \in A} y \mathbb{P}(f(X) = y)
$$

$$
= \mathbb{E}[f(X)]
$$

Motivation

$$
U_n \sim \text{Uniform}(\{-n, -n+1, \dots, n\})
$$

$$
V_n \sim \text{Uniform}(\{-n, +n\})
$$

$$
Z_n = 0
$$

$$
S_n = \text{random walk for } n \text{ steps} \sim n - 2\text{Bin}\left(n, \frac{1}{2}\right)
$$

All of these have $\mathbb{E} = 0$.

Variance

"Measure how concentrated a random variable is around its mean".

Definition. The variance of X is:

 $Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$

Property:

$$
\text{Var}(X) \geq 0
$$

with equality $\iff \mathbb{P}(X = \mathbb{E}[X]) = 1.$

Alternative Characterisation:

$$
\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
$$

Proof. Write $\mu = \mathbb{E}[X]$. Then

$$
\begin{aligned} \text{Var}(X) &= \mathbb{E}[(X - \mu)^2] \\ &= \mathbb{E}[X^2 - 2\mu X + \mu^2] \\ &= \mathbb{E}[X^2] - 2\mu \mathbb{E}[X] + \mu^2 \\ &= \mathbb{E}[X^2] - \mu^2 \end{aligned}
$$

Properties

If $\lambda, c \in \mathbb{R}$:

- $Var(\lambda X) = \lambda^2 Var(X)$
- $Var(X + c) = Var(X)$.

Start of lecture 11 Example 1. $X \sim \text{Poisson}(\lambda)$, $\mathbb{E}[X] = \lambda$.

$$
\text{Var}(x) = \mathbb{E}[X^2] - \lambda^2
$$

"Falling factorial trick": sometimes $\mathbb{E}[X(X-1)]$ is easier than $\mathbb{E}[X^2]$. Here:

$$
\mathbb{E}[X(X-1)] = \sum_{k\geq 2} k(k-1)e^{-\lambda} \frac{\lambda^k}{k!}
$$

$$
= \lambda^2 e^{-\lambda} \sum_{k\geq 2} \frac{\lambda^{k-2}}{(k-2)!}
$$

$$
= \lambda^2
$$

$$
\mathbb{E}[X^2] = \mathbb{E}[X(X-1) + X]
$$

$$
= \mathbb{E}[X(X-1)] + \mathbb{E}[X]
$$

$$
= \lambda^2 + \lambda
$$

$$
\implies \text{Var}(x) = \lambda
$$

Example 2. $Y \sim \text{Geom}(p) \in \{1, 2, 3, \dots\}.$ $\mathbb{E}[Y] = \frac{1}{p}$. $\text{Var}(y) = \dots = \frac{1-p}{p^2}$ $\frac{-p}{p^2}$. (left as an exercise)

Note. λ large: $Var(X) = \mathbb{E}[X]$. p small (so Y large): $Var(Y) \approx \frac{1}{n^2}$ $\frac{1}{p^2} = (\mathbb{E}[X])^2.$

Example 3. $X \sim \text{Bern}(p)$. $\mathbb{E}[X] = 1 \times p = p$. $\mathbb{E}[X^2] = 1^2 \times p = p$. $Var(X) = p - p^2 = p(1 - p)$

Example 4. $X \sim Bin(n, p)$, $\mathbb{E}[X] = np$. $\mathbb{E}[X^2] = \text{ugly} \dots$

Goal: Study $Var(X_1 + \cdots + X_n)$ for not independent.

Preliminary: $\mathbb{E}[\text{Products of RVs}]$. Setting: *X*, *Y* independent random variables and *f*,
f functions $\mathbb{R} \to \mathbb{R}$. Then:

$$
\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]
$$

"splits as a product"

Key example 1: $f, g : f(x) = g(x) = x$. Then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. Key example 2: $f(x) = g(x) = z^x$ (or e^{tx}). Proof.

$$
LHS = \sum_{x,y \in \text{Im}} f(x)g(y)\mathbb{P}(X = x, Y = y)
$$

=
$$
\sum_{x,y \in \text{Im}} f(x)g(y)\mathbb{P}(X = x)\mathbb{P}(Y = y)
$$

=
$$
\left[\sum_{x \in \text{Im } X} f(x)\mathbb{P}(X = x)\right] \left[\sum_{y \in \text{Im } Y} g(y)\mathbb{P}(Y = y)\right]
$$

=
$$
\mathbb{E}[f(X)]\mathbb{E}[g(Y)]
$$

Sums of Independent Random Variables

 X_1, \ldots, X_n independent. Then

$$
Var(X_1 + \cdots X_n) = Var(X_1) + \cdots Var(X_n)
$$

Proof. (Suffices to prove $n = 2$ by induction). Say $\mathbb{E}[X] = \mu$, $\mathbb{E}[Y] = \nu$. Then $\mathbb{E}[X+Y] =$ $\mu + \nu$.

$$
\begin{aligned} \text{Var}(X+Y) &= \mathbb{E}[(X+Y-\mu-\nu)^2] \\ &= \mathbb{E}[(X-\mu)^2] + \mathbb{E}[(Y-\mu)^2] + 2\mathbb{E}[(X-\mu)(Y-\nu)] \\ &= \text{Var}(X) + \text{Var}(Y) + \mathbb{E}[X-\mu]\mathbb{E}[Y-\nu] \end{aligned}
$$
\n
$$
\begin{aligned} \text{Var}(X) + \text{Var}(Y) \end{aligned}
$$

Example 4. $Var(Bin(n, p)) = np(1 - p)$.

Goal: Study $Var(X + Y)$ when X, Y are not independent.

Definition. X, Y two random variables. Their *covariance* is

 $Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

"Measures how dependent X, Y are, and in which *direction*": If $Cov > 0$ then X bigger means Y bigger, and if $Cov < 0$ then X bigger means Y smaller.

Properties

- $Cov(X, Y) = Cov(Y, X)$
- $Cov(X, X) = Var(X)$.
- Alternative characterisation:

$$
Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]
$$

(often more useful, and particularly nice if $\mathbb{E}[X] = 0$) Proof.

$$
\mathbb{E}[XY] - \mu \underbrace{\mathbb{E}[Y]}_{\nu} - \nu \underbrace{\mathbb{E}[X]}_{\mu} + \mu\nu
$$

=
$$
\mathbb{E}[XY] - \mu \underbrace{\mathbb{E}[Y]}_{\mu} - \mu\nu
$$

- $c, \lambda \in \mathbb{R}$:
	- $-\text{Cov}(c, X) = 0$
	- $-\text{Cov}(X + c, Y) = \text{Cov}(X, Y)$
	- $-\text{Cov}(\lambda X, \lambda Y) = \lambda^2 \text{Cov}(X, Y)$
- $Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$
- Covariance is linear in each argument, i.e.

$$
Cov\left(\sum \lambda_i X_i, Y\right) = \sum \lambda_i Cov(X_i, Y)
$$

and (applying in two stages)

$$
Cov\left(\sum \lambda_i X_i, \sum \mu_j Y_j\right) = \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j Cov(X_i, Y_j)
$$

"Special case":

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_i\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i\right)
$$

$$
= \sum_{i=1}^{n} \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j)
$$

(for an example, see Q11 on sheet 3)

 \Box

Note. We have already seen that X, Y independent implies $Cov(X, Y) = 0$, but it is not the case the zero covariance implies independence.

Start of

lecture 12 Example 0. $Var(X + Y) = Var(X) + Var(Y)$ for independent X, Y. Consider $Y = -X$. Then

$$
Var(Y) = Var(-X) = (-1)^{2}Var(x) = Var(X)
$$

$$
0 = Var(0) = Var(X + Y) \neq Var(X) + Var(Y) = 2Var(X)
$$

Example 1. $(\sigma(1), \ldots, \sigma(n))$ uniform on $\sum_n A_i = {\sigma(i) = i}.$

 $N = \mathbb{1}_{A_1} + \cdots + \mathbb{1}_{A_n}$ = number of fixed points

Already seen: $\mathbb{E}[N] = n \times \frac{1}{n} = 1$. Goal: Var(N).

Note. A_i and A_j are not independent.

$$
\operatorname{Var}(\mathbb{1}_{A_i}) = \frac{1}{n} \left(1 - \frac{1}{n} \right)
$$

\n
$$
\operatorname{Cov}(\mathbb{1}_{A_i}, \mathbb{1}_{A_j}) = \mathbb{E}[\mathbb{1}_{A_i} \mathbb{1}_{A_j}] - \mathbb{E}[\mathbb{1}_{A_i}] \mathbb{E}[\mathbb{1}_{A_j}]
$$

\n
$$
= \mathbb{E}[\mathbb{1}_{A_i \cap A_j}] - \mathbb{E}[\mathbb{1}_{A_i}] \mathbb{E}[\mathbb{1}_{A_j}]
$$

\n
$$
= \mathbb{P}(A_i \cap A_j) - \mathbb{P}(A_i) \mathbb{P}(A_j)
$$

\n
$$
= \frac{1}{n(n-1)} - \frac{1}{n} \times \frac{1}{n}
$$

\n
$$
= \frac{1}{n^2(n-1)}
$$

\n
$$
> 0
$$

\n
$$
\implies \operatorname{Var}(N) = \sum_{i=1}^{n} \operatorname{Var}(\mathbb{1}_{A_i}) + \sum_{i \neq j} \operatorname{Cov}(\mathbb{1}_{A_i}, \mathbb{1}_{A_j})
$$

\n
$$
= n \times \frac{1}{n} \left(1 - \frac{1}{n} \right) + n(n-1) \times \frac{1}{n^2(n-1)}
$$

\n
$$
= 1 - \frac{1}{n} + \frac{1}{n}
$$

\n
$$
= 1
$$

Compare with Bin $(n, \frac{1}{n})$:

$$
\mathbb{E} = 1, \qquad \text{Var} = n \times \frac{1}{n} \left(1 - \frac{1}{n} \right) = 1 - \frac{1}{n}
$$

Chebyshev's Inequality

Theorem (Chebyshev's Inequality). X a random variable, $\mathbb{E}[X] = \mu$, $\text{Var}(X) =$ $\sigma^2 < \infty$. Then: $\mathbb{P}(|X - \mu| \geq \lambda) \leq \frac{\text{Var}(X)}{\lambda^2}$ λ^2

Comment: Remember the proof, not the statement!

Proof. Idea: Apply Markov's Inequality to

$$
(X - \mu)^2
$$

(which is non-negative as required). Then:

$$
\mathbb{P}(|X - \mu| \ge \lambda) = \mathbb{P}((X - \mu)^2 \ge \lambda^2)
$$

$$
\le \frac{\mathbb{E}[(X - \mu)^2]}{\lambda^2}
$$

$$
= \frac{\text{Var}(X)}{\lambda^2}
$$

 \Box

Comments

- Chebyshev's Inequality gives better bounds than Markov's inequality.
- Note can apply to all Random Variables, not just ≥ 0 .
- However, $\text{Var}(X) < \infty$ is a stronger condition than $\mathbb{E}[X] < \infty$.

Definition. • Quantity $\sqrt{\text{Var}(X)} = \sigma$ is called the *standard deviation* of X.

- Same "units" as X. (Scales linearly)
- (Not many nice properties).
- Rewriting Chebyshev; use $\lambda = k$ √ σ^2 , then

$$
\mathbb{P}(|X - \mu| \ge \sigma) \le \frac{1}{k^2}
$$

• Nice uniform statement

Conditional Expectation

Setting: $(\Omega, \mathcal{F}, \mathbb{P})$. Recall: $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ we defined

$$
\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Definition. $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, X a random variable. The conditional expectation is

$$
\mathbb{E}[X \mid B] = \frac{\mathbb{E}[X \mathbb{1}_B]}{\mathbb{P}(B)}
$$

Example. *X* dice, uniform on $\{1, \ldots, 6\}$.

$$
\mathbb{E}[X \mid X \text{ prime}] = \frac{\frac{1}{6}[0+2+3+0+5+0]}{\frac{1}{2}}
$$

$$
= \frac{1}{3}(2+3+5)
$$

$$
= \frac{10}{3}
$$

Alternative Characterisation:

$$
\mathbb{E}[X \mid B] = \sum_{x \in \text{Im } X} \mathbb{P}(X = x \mid B)
$$

Proof.

$$
RHS = \sum \frac{x \mathbb{P}(\{X = x\} \cap B)}{\mathbb{P}(B)}
$$

$$
= \sum_{\substack{x \neq 0 \\ x \in \text{Im } X}} \frac{x \mathbb{P}(X \mathbb{1}_B = x)}{\mathbb{P}(B)}
$$

and note

$$
\mathbb{E}[X \mathbb{1}_B] = \sum_{\substack{x \neq 0 \\ x \in \text{Im } X}} x \mathbb{P}(X \mathbb{1}_B = x)
$$

Law of Total Expectation

 (B_1, B_2, \dots) a finite or countably infinite partition of Ω with $B_n \in \mathcal{F}$ for all n such that $\mathbb{P}(B_n) > 0$. X is a random variable. Then:

$$
\mathbb{E}[X] = \sum_{n} \mathbb{E}[X \mid B_n] \mathbb{P}(B_n)
$$

For example, $X = \mathbb{1}_A$ recovers the law of total probability. Proof.

$$
RHS = \sum_{n} \mathbb{E}[X \mathbb{1}_{B_n}]
$$

= $\mathbb{E}[X \cdot (\mathbb{1}_{B_1} + \dots + \mathbb{1}_{B_n})]$
= $\mathbb{E}[X \cdot 1]$
= $\mathbb{E}[X]$

Application: Two stage randomness where (B_n) describes what happens in stage 1. Application 1: "random sums" (random number of terms). $\overline{(X_n)_{n\geq 1}}$ independent and identically distributed random variables. $N \in \{0, 1, 2, \dots\}$ random index independent of (X_n) .

$$
S_n = X_1 + \dots + X_n
$$

with $\mathbb{E}[X_n] = \mu$ so $\mathbb{E}[S_n] = n\mu$. Then

$$
\mathbb{E}[S_N] = \sum_{n\geq 0} \mathbb{E}[S_N \mid N = n] \mathbb{P}(N = n)
$$

$$
= \sum_{n\geq 0} \mathbb{E}[S_n] \mathbb{P}(N = n)
$$

$$
= \sum_{n\geq 0} n\mu \mathbb{P}(N = n)
$$

$$
= \mu \mathbb{E}[N]
$$

Start of

lecture 13 Random Walks

Setting: $(X_n)_{n\geq 1}$ independent and identically distributed random variables

$$
S_n = x_0 + X_1 + \dots + X_n
$$

 (S_0, S_1, S_2, \dots) is a random process called Random Walk started from x_0 .

 \Box

Main example in our course:

 $\overline{Simple\ Random\ Walk\ (SRW)}$ on $\mathbb Z$.

$$
\mathbb{P}(X_i = +1) = p \qquad \mathbb{P}(X_i = -1) = q = 1 - p
$$

 $x_0 \in \mathbb{Z}$ (often $x_0 = 0$). Special case: $p = q = \frac{1}{2}$ $\frac{1}{2}$. ("symmetric"):

For example, $P(S_2 = x_0) = pq + qp = 2pq$.

Useful interpretation: A gambler repeatedly plays a game where he wins £1 with $\mathbb{P} = p$ and losses £1 with $\overline{P} = q$.

Often we stop if we ever reach $\pounds 0$.

Question: Suppose we start with $\pounds x$ at time 0. What is the probability he reaches $\pounds a$ before $£0?$

Notation.

$$
\mathbb{P}_X(\bullet)^{a} ='' \mathbb{P}(\bullet \mid x_0 = x)
$$

"measure of RW started from x_0 ".

Key Idea: Conditional on $S_1 = z$, $(S_1, S_2, ...)$ is a random walk started from z. Now we apply the Law of Total Probability:

$$
\mathbb{P}_X(S \text{ hits } a \text{ before } 0 = \sum_z \mathbb{P}_X(S \text{ hits } a \text{ before } 0 \mid S_1 = z) \mathbb{P}_X(S_1 = z)
$$

$$
= \sum_z \mathbb{P}_Z(S \text{ hits } a \text{ before } 0) \mathbb{P}_Z(S_1 = z)
$$

so $h_X = \mathbb{P}_X(S$ hit a before 0). $S_1 = x \pm 1$.

$$
h_X = px_{x+1} + qh_{x-1}
$$

Important to specify boundary conditions:

$$
h_0 = 0, \qquad h_a = 1.
$$

Now we apply law of total expected value. Expected absorption time:

$$
T = \min\{n \ge 0 : S_n = 0 \text{ or } S_n = a\}
$$

"first time S hits $\{0, a\}$ ". Want: $\mathbb{E}_x[T] = \tau_x$.

$$
\tau_x = \mathbb{E}_x[T] = p\mathbb{E}_x[T \mid S_1 = x + 1] + q\mathbb{E}_x[T \mid S_1 = x - 1]
$$

= $p\mathbb{E}_{x+1}[T + 1] + q\mathbb{E}_{x-1}[T + 1]$
= $p(1 + \mathbb{E}_{x+1}[T]) + q(1 + \mathbb{E}_{x-1}[T])$
= $1 + p\tau_{x+1} + q\tau_{x-1}$

Boundary conditions:

$$
\tau_0=\tau_a=0
$$

"we're already there"

Solving Linear Recurrence Equations

Homogeneous case (boundary conditions: h_0, h_a):

$$
ph_{x+1} - h_x + qh_{x-1} = 0
$$

- Analagous to DEs
- Solutions form a vector space.

Plan: (homogeneous case):

• Find two solutions (linearly independent)

Guess $h_x = \lambda^x$, so

$$
p\lambda^{x+1} - \lambda^x + q\lambda^{x-1} = 0
$$

$$
p\lambda^2 - \lambda + q = 0
$$

Quadratic in $\lambda \implies \lambda = 1$ or $\frac{p}{q}$. Case $q \neq p$: $h_x = A + B \left(\frac{q}{n} \right)$ $\left(\frac{q}{p}\right)^x$.

• Use boundary conditions to find A, B : i.e.

$$
x = 0: \t h_0 = 0 = A + B
$$

$$
x = a: \t h_a = 1 = A + B \left(\frac{q}{p}\right)^a
$$

$$
h_x = \frac{\left(\frac{q}{p}\right)^x - 1}{\left(\frac{q}{p}\right)^a - 1}
$$

Case $p = q = \frac{1}{2}$ $\frac{1}{2}$: (symmetric random walk)

• Note $h_x = x$ "x is the average of $x + 1$ and $x - 1$ ".

General solution: $h_x = A + Bx$. Boundary conditions:

$$
h_0 = 0 = A
$$

$$
h_a = 1 = A + Ba
$$

so $A = 0, B = \frac{1}{a}$ $\frac{1}{a}$. Hence

$$
h_x = \frac{x}{a}
$$

Probability sanity check: $p = q = \frac{1}{2}$ $rac{1}{2}$. Study Expected profit if you start from $\mathcal{L}x$ and play until time T.

$$
\mathbb{E}_x[S_T] = a \mathbb{P}_x(S_T = a) + 0 \times \mathbb{P}_x(S_T = 0) = a \cdot \frac{x}{a} = x
$$

fits intuition for fair games.

Inhomogeneous Case

$$
ph_{x+1} - h_x + qh_{x-1} = f(x) = -1
$$

Plan:

- Find a particular solution Guess: "one level more complicated than general solution".
- Add on general solution
- Solve for boundary conditions

For $p \neq q$: Guess $h_x = \frac{x}{q-p}$ works as a particular solution. For $p = q = \frac{1}{2}$ $\frac{1}{2}$: Guess $h_x = Cx^2$ might work. Sub in:

$$
\frac{C}{2}(x+1)^2 - Cx^2 + \frac{C}{2}(x-1)^2 = -1 \implies C = -1
$$

So

$$
h_x = A + Bx - x^2
$$

then find A , B with boundary conditions: roots are 0 and a , so

$$
h_x = x(a - x)
$$

Start of lecture 14 Unbounded Random Walk: "Gambler's Ruin"

$$
\mathbb{P}_x(\text{hit 0}) = \lim_{a \to \infty} (\text{hit 0 before } a)
$$

$$
= \begin{cases} 1 - \left(\frac{q}{p}\right)^x & p > q \\ 1 & p < q \\ 1 & p = q = 1 \end{cases}
$$

1 $\overline{2}$

 $rac{1}{2}$:

 $p=\frac{1}{2}$ $\frac{1}{2}$: \mathbb{E}_x [time to hit 0] $\geq \mathbb{E}_x$ [time to hit 0 or $a] = x(a - x)$ which $\rightarrow \infty$ as $a \rightarrow \infty$.

Key conclusion: T_x (time to hit 0 from x) is for $p = \frac{1}{2}$

- $\bullet\,$ finite with probability $=1$
- $\bullet\,$ infinite expectation

Generating Functions

Setting: X is a random variable taking values in $\{0, 1, 2, \ldots\}$.

Definition. The *Probability Generating Function* of X is $G_X(z)=\mathbb{E}[z^X]=\sum$ $k\geq 0$ $z^k \mathbb{P}(X = k).$ Analytic comment: $G_X: (-1,1) \stackrel{k \geq 0}{\rightarrow} \mathbb{R}$.

Idea: "To encode the distribution of X as a function with nice analytic properties".

Example 1. $X \sim \text{Bern}(p)$ $G_X(z) = z^0 \mathbb{P}(X = 0) + z^1 \mathbb{P}(X = 1) = (1 - p) + pz$

Example. $X \sim Bin(n, p)$ we will save for later.

Example 2. $X \sim \text{Poisson}(\lambda)$

$$
G_X(z) = \sum_{k\geq 0} z^k e^{-\lambda} \frac{\lambda^k}{k!}
$$

$$
= e^{-\lambda} \sum_{k\geq 0} \frac{(\lambda z)^k}{k!}
$$

$$
= e^{-\lambda} e^{\lambda z}
$$

$$
= e^{\lambda (z-1)}
$$

Recovering PMF (mass function) from PGF

Note. $G_X(0) = 0^0 \mathbb{P}(X = 0) = \mathbb{P}(X = 0)$.

Idea: Differentiate n times.

$$
\frac{d^n}{dz^n}G_X(z) = \sum_{k\geq 0} \frac{d^n}{dz^n}(z^k)\mathbb{P}(X=k)
$$

=
$$
\sum_{k\geq 0} k(k-1)\cdots(k-n+1)z^{k-n}\mathbb{P}(X=k)
$$

=
$$
\sum_{k\geq n} k(k-1)\cdots(k-n+1)z^{k-n}\mathbb{P}(X=k)
$$

=
$$
\sum_{l\geq 0} (l+1)(l+2)\cdots(l+n)z^l\mathbb{P}(X=l+n)
$$

Evaluate at 0:

$$
\frac{d^n}{dz^n}G_X(0) = n!\mathbb{P}(X = n).
$$

$$
\mathbb{P}(X = n) = \frac{1}{n!}G_X^{(n)}(0)
$$

Key fact: PGF determines PMF / distribution exactly.

Recovering other probabilistic quantities

Note.
$$
G_X(1) = \sum_{k \geq 0} \mathbb{P}(X = k) = 1
$$
.

Technical comment: $G_X(1)$ means $\lim_{z\to 1} G_X(z)$ if the domain is $(-1,1)$ (the limit is from below).

• What about $G'_X(1)$?

$$
G'_X(z) = \sum_{k \ge 1} kz^{k-1} \mathbb{P}(X = k)
$$

$$
G'_X(1) = \sum_{k \ge 1} k \mathbb{P}(X = k) = \mathbb{E}[X]
$$

• What about $G_X^{(n)}(1)$?

$$
G_X^{(n)}(1) = \sum_{k \ge n} k(k-1) \cdots (k-n+1) \mathbb{P}(X = k)
$$

= $\mathbb{E}[X(x-1) \cdots (X - n + 1)]$

• Other expectations:

$$
\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X]
$$

$$
= G''_X(1) + G'_X(1)
$$

$$
Var(X) = G''_X(1) + G'_X(1) - [G'_X(1)]^2
$$

Idea: Find in general $\mathbb{E}[P(X)]$ using $\mathbb{E}[\text{falling factorials of } X]$.

Note (Linear Algebra Aside). The falling factorials

$$
1, X, X(X-1), X(X-1)(X-2)
$$

form a basis for $\mathbb{R}[X]$ (the set of polynomials with real coefficients).

PGFs for sums of Independent Random Variables

 X_1, \ldots, X_n independent random variables. G_{X_1}, \ldots, G_{X_n} are the PGFs. Let $X = X_1 + \cdots + X_n$. Question: What's the PGF of X ? (Is it nice)?

$$
G_X(z) = \mathbb{E}[Z^X]
$$

= $\mathbb{E}[z^{X_1 + \dots + X_n}]$
= $\mathbb{E}[z^{X_1}z^{X_2} \dots z^{X_n}]$
= $\mathbb{E}[z^{X_1}] \dots \mathbb{E}[z^{X_n}]$
= $G_{X_1}(z) \dots G_{X_n}(z)$

Special case: $X_i = X_1 \to G_X(z) = (G_{X_1}(z))^n$.

Note.

$$
\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]
$$

for independent random variables X, Y .

Start of

lecture 15 **Note.** PGF is much nicer than PMF of $X!$

Example. $X \sim Bin(n, p)$

$$
X = X_1 + \cdots X_n
$$

(Identical independently distributed $\text{Bern}(p)$)

$$
G_X(z) = (1 - p + pz)^n
$$

Example. $X \sim \text{Poi}(\lambda)$, $Y \sim \text{Poi}(\mu)$ independent. $G_X(z) = e^{\lambda(z-1)},$ $G_Y(z) = e^{\mu(z-1)}$ We will study $Z = X + Y$. $G_{X+Y}(z) = G_X(y)G_Y(z)$ $= e^{\lambda(z-1)} e^{\mu(z-1)}$ $= e^{(\lambda + \mu)(z-1)}$ $=$ PGF of Poi($\lambda + \mu$) So $X + Y \sim \text{Poisson}(\lambda + \mu)$.

PGF for Random Sums

Setting: X_1, X_2, \ldots IID with same distribution as X. X takes values in $\{0, 1, 2, \ldots\}$ and N is a random value taking values in $\{0, 1, 2, \ldots\}$ independent of (X_n) .

Remark. Perfect pairing with PGFs.

$$
\mathbb{E}[z^{X_1 + \dots + X_n}] = \sum_{n \ge 0} \mathbb{E}[z^{X_1 + \dots + X_N} \mid N = n] \mathbb{P}(N = n)
$$

$$
= \sum_{n \ge 0} \mathbb{E}[z^{X_1 + \dots + X_n} \mid N = n] \mathbb{P}(N = n)
$$

$$
= \sum_{n \ge 0} \mathbb{E}[z^{X_1 + \dots + X_n}] \mathbb{P}(N = n)
$$

$$
= \sum_{n \ge 0} \mathbb{E}[z^{X_1}] \cdots \mathbb{E}[z^{X_n}] \mathbb{P}(N = n)
$$

$$
= \sum_{n \ge 0} (G_X(z))^n \mathbb{P}(N = n)
$$

$$
= G_N(G_X(z))
$$

Example. $X_i \sim \text{Bern}(p)$, $N \sim \text{Poisson}(\lambda)$. $G_{X_i}(z) = (1 - p) + pz$ $G_N(s) = e^{\lambda(s-1)}$ Interpretation: "Poisson thinning", for example "Poi (λ) misprints, each gets found with $\mathbb{P} = 1 - p$." (see Q7 on Example sheet) $Y = X_1 + \cdots + X_N$

$$
G_Y(z) = G_N(G_{X_i}(z))
$$

= $e^{\lambda[1-p+pz-1]}$
= $e^{\lambda p(z-1)}$
= PGF of Poi(λp)

In general: PMF of $X_1 + \cdots + X_n$ is horrible, $G_N(G_X(z))$ is nice.

Branching Process

"Modelling growth of a population". History:

- Bienaymé (1840s)
- Galton-Watson (1870s)

Setting: Random branching tree. Let X be a random variable on $\{0, 1, 2, \dots\}$.

- One individual at generation 0
- \bullet has a random number of children, with distribution X. If 0, end. Each child independently has some children, each with distribution X.
- Continue.

Goal:

- Study number of individuals in each generation
- Total population size: is it *finite* of *infinite*.

Reduction: Write Z_n = number of individuals in generation n.

$$
Z_0 = 1,
$$
 $Z_1 \sim X,$ $Z_{n+1} = Z_1^{(n)} + \cdots + X_{Z_n}^{(n)}$

" $X_k^{(n)}$ = number of children of k-th individual in generation n".

Note. If $Z_n = 0$ then $Z_{n+1} = Z_{n+2} = \cdots = 0$.

Key Observation: Z_{n+1} is a random sum,

$$
\mathbb{E}[Z_{n+1}] = \mathbb{E}[X]\mathbb{E}[Z_n]
$$

Induction:

$$
\mathbb{E}[Z_n] = (\mathbb{E}[X])^n
$$

Notation:

$$
\mu = \mathbb{E}[X] \implies \mathbb{E}[Z_n] = \mu^n.
$$

Using PGFs: Let G be the PGF of X, G_n the PGF of Z_n . Random sums:

$$
G_{n+1}(z) = G_n(G(z))
$$

Induct:

$$
G_n(z) = \underbrace{G(\cdots G)}_{n \text{ Gs}}(z) \cdots)
$$

Key event of interest:

$$
\{Z_n = 0\}, \qquad q_n = \mathbb{P}(Z_n = 0)
$$

"extinct by generation n ".

Definition (Extinction Probability).

$$
q = \mathbb{P}(Z_n = 0 \text{ for } n \ge 1)
$$

(which is the probability that the population size is finite)

Note. $\{Z_n = 0\} \subseteq \{Z_{n+1} =\}$. Why? Because $Z_n = 0 \implies Z_{n+1} = 0$, and $\{Z_n \text{ for some } n \geq 1\} = \bigcup$ $n\geq 1$ $\{Z_n = 0\}$ So continuity gives $\sqrt{ }$ \setminus

$$
C = \frac{1}{2}
$$

$$
\mathbb{P}(Z_n = 0) \uparrow \mathbb{P}\left(\bigcup_{n \ge 1} \{Z_n = 0\}\right)
$$

so

$$
q_n\uparrow q
$$

as $n \to \infty$.

Classification:

- $\mu < 1$ subcritical
- $\mu = 1$ critical
- $\mu > 1$ supercritical

Degenerate case: $\mathbb{P}(X = 1) = 1$. Boring \rightarrow exercise.

Theorem. Assume $\mathbb{P}(X = 1) \neq 1$. Then $q = 1$ (i.e. "always finite / dies out") if and only if $\mu = \mathbb{E}[X] \leq 1$.

Remark. Interesting that depends on X only through E .

Start of lecture 16 Interpretation: "Finite" eg 100 out of a large population, "Infinite" \rightarrow affects positive proportion of population.

Proof (baby proof). (subcritical) $\mu < 1$

$$
\mathbb{P}(Z_n \ge 1) \le \frac{\mathbb{E}[Z_n]}{1} = \mu^n \to 0
$$

(Markov's Inequality) (supercritical):

Note. $\mathbb{E}[Z_n] \to \infty$ does not imply $\mathbb{P}(Z_n = 0) \not\approx 1$.

Reminder: G the PGF of X, G_n the PGF of Z_n . We care about $\{Z_n = 0\}$, $q_n = \mathbb{P}(Z_n = 0)$ 0). Also $q_n = G_n(0)$.

Claim. q the extinction probability, then $G(q) = q$.

Proof 1. G continuous. Note $q_{n+1} = G(q_n)$ and $q_{n+1} \rightarrow q$, and $G(q_n) \rightarrow G(q)$ so $q = G(q)$. \Box

Proof 2. LTP (revision of random sums)

Total finite \iff ALl subtrees of 1st generation are finite

$$
q = \mathbb{P}(\text{finite})
$$

= $\sum_{k\geq 0} \mathbb{P}(\text{all finite} \mid Z_1 = l) \mathbb{P}(Z_1 = k)$
= $\sum_{k\geq 0} [\mathbb{P}(\text{finite})]^k \mathbb{P}(Z_1 = k)$
= $\sum_{k\geq 0} q^k \mathbb{P}(Z_1 = k)$
= $G(q)$

 \Box

Facts about G :

- $G(0) = \mathbb{P}(X = 0) \geq 0$
- $G(1) = 1$
- $G'(1) = \mathbb{E}[X] = \mu$
- *G* is *smooth*, all derivatives ≥ 0 on [0, 1).

Remark. • Exactly one solution on $[0, 1)$ • By IVT / Rolle on $G(z) - z$.

Theorem. Assume $\mathbb{P}(X = 1) \neq 1$. Then q is the minimal solution to $z = G(z)$ in [0, 1].

Corollary. $q = 1 \iff \mu \leq 1$.

Proof. Let t be the minimal solution. Reminder: G is increasing,

$$
t \ge 0
$$

\n
$$
\implies G(t) \ge G(0)
$$

\n
$$
\implies G(G(t)) \ge G(G(0))
$$

\n
$$
\implies G_n(t) \ge G_n(0)
$$

\n
$$
\implies t \ge q_n
$$

\n
$$
\implies t \ge q
$$

Note q is a solution, so we must have $q = t$.

 \Box

 \Box

Continuous Probability

Focus now: Case where $\text{Im}(X)$ is an *interval* in \mathbb{R} . Why?

- Natural for measuring, for example physical quantity, for example proportions
- "Limits" of discrete random variable
- Calculus tools for nice calculations

Redefinition:

Definition. A random variable X on $(\omega, \mathcal{F}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ such that $\{X \leq x\} \in \mathcal{F}.$

Check: consistent with previous definition when Ω countable (or Im(X) is countable).

Drawback: Can't take $\mathcal{F} = \mathcal{P}(\mathbb{R})$.

Definition. The cumulative distribution function (CDF) of RV X is $F_X : \mathbb{R} \to [0, 1]$

$$
F_X(x) = \mathbb{P}(X \le x)
$$

Examples

X a dive on $\{1, ..., 6\}$.

Angle of ludo spinner:

Properties of CDF

- F_X increasing, i.e. $x \leq y \implies F_X(x) \leq F_X(y)$. Why? $F_X(x) = \mathbb{P}(X \leq x) \leq$ $\mathbb{P}(X \leq y) = F_X(y).$
- $\mathbb{P}(X > x) = 1 F_X(x)$
- $\mathbb{P}(a < x \le b) = F_X(b) F_X(a)$. Why? $\mathbb{P}(a < X \le b) = \mathbb{P}(X \le b) \mathbb{P}(X \le a)$.
- \bullet F_X is right-continuous and left limits exist, i.e.

$$
\lim_{y \downarrow x} F_X(y) = F_X(x)
$$

and

Proof.

$$
\lim_{y \uparrow x} F_X(y) = F_X(x^-) = \mathbb{P}(X < x)
$$

•
$$
\lim_{x \to \infty} F_X(x) = 1
$$
, $\lim_{x \to -\infty} F_X(x) = 0$.

Start of lecture 17

• (right-continuous) Sufficient to prove

$$
F_X\left(x+\frac{1}{n}\right) \to F_X(x)
$$

as $n \to \infty$.

$$
A_n = \left\{ x < X \le x + \frac{1}{n} \right\}
$$

decreasing events, with

$$
\bigcap_{n\geq 1}A_n=\emptyset
$$

so

$$
\mathbb{P}(A_n) = F_X\left(x + \frac{1}{n}\right) - F_X(x) \to 0
$$

• (left-limits) $F_X(x-\frac{1}{n})$ $\frac{1}{n}$) is a sequence *increasing* bounded above by $F_X(x)$. $\{X_n \le x - \frac{1}{n}\}$ $\frac{1}{n}$ is a increasing sequence of events with

$$
\bigcup_{n\geq 1} \left\{ X \leq x - \frac{1}{n} \right\} = \left\{ X < x \right\}
$$

so

$$
F_X\left(x - \frac{1}{n}\right) = \mathbb{P}\left(X \le x - \frac{1}{n}\right) \to \mathbb{P}(X < x)
$$

• ($\lim_{x\to\infty} F_X(x) = 1$) { $X \leq n$ } increasing events,

$$
\bigcup_{n\geq 1} \{X \leq n\} = \Omega
$$

so

$$
F_X(n) = \mathbb{P}(X \le n) \to \mathbb{P}(\Omega) = 1
$$

• Similar for $\lim_{x\to-\infty} F_X(x) = 0$.

 \Box

\n- **Definition.** A random variable is *continuous* if *F* is continuous. This implies that\n
	\n- $$
	F_X(x) = F_X(x^-) \iff \mathbb{P}(X \leq x) = \mathbb{P}(X < x) \iff \mathbb{P}(X = x) = 0 \quad \forall x
	$$
	\n- $-$ and *in this course F* is also differentiable so that\n $F_X(x) = \mathbb{P}(X \leq x) = \int_{u = -\infty}^{x} f_X(u) \, \mathrm{d}u$ \n
	\n- (cf Part II P & M) where $f_X : \mathbb{R} \to \mathbb{R}$ has the properties:\n
		\n- $* f_X(x) \geq 0$ for all x
		\n- $* \int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$
		\n- f_X is the probability density function of *X* (PDF or "density").
		\n\n
	\n

Intuitive Meaning:

$$
\mathbb{P}(x < X \le x + \delta x) = \int_{x}^{x + \delta x} f_X(u) \, \mathrm{d}u \approx \delta x \cdot f(x)
$$
\n
$$
\mathbb{P}(a < X \le b) = \int_{a}^{b} f_X(x) \, \mathrm{d}x = \mathbb{P}(a \le X < b)
$$

So for $S \subset \mathbb{R}$ (S "nice" for example interval or countable union of intervals).

$$
\mathbb{P}(X \in S) = \int_{S} f_X(u) \mathrm{d}u
$$

Key Takeaways

- The CDF is a collection of probabilities
- PDF is not a probability. How to use? Integrate it to get a probability.

Examples

(1) Uniform distribution $X \sim U[a, b]$ $(a, b \in \mathbb{R}, a < b)$.

$$
f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise} \end{cases}
$$

$$
F_X(x) = \int_a^x f_X(u) \, du \frac{x-a}{b-a}
$$

for $a \leq x \leq b$.

Question: "Limit of discrete uniform random variables?"

(2) Exponential distribution $\lambda > 0$.

$$
X \sim \text{Exp}(\lambda)
$$

$$
f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & \text{otherwise} \end{cases}
$$

Check:

(i)
$$
\geq 0
$$
? Yes
\n(ii) $\int_0^\infty f_X(x) = [-e^{-\lambda x}]_0^\infty = 1$.
\n
$$
F_X(x) = \mathbb{P}(X \geq x) = \int_0^x \lambda e^{-\lambda u} du = 1 - e^{-\lambda x}
$$

Remember:

$$
\mathbb{P}(X \ge x) = 1 - F_X(x) + \mathbb{P}(X = x) = e^{-\lambda x}
$$

"Limit of (rescaled) geometric distribution". Good way to model arrival times "how long to wait before something happens" \rightarrow link to Poisson usage \leftrightarrow Part II Applied Probability.

Memoryless Probability

(Conditional P works as before). $X \sim \text{Exp}(\lambda)$, $s, t > 0$.

$$
\mathbb{P}(X \ge s + t \mid X \ge s) = \frac{\mathbb{P}(X \ge s + t)}{\mathbb{P}(X \ge s)}
$$

$$
= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}
$$

$$
= e^{-\lambda t}
$$

$$
= \mathbb{P}(X \ge t)
$$

Exercise: X memoryless $\iff X \sim \text{Exp}(\lambda)$. (continuous random variable with a density).

Expectation of Continuous Random Variables

Definition. X has density f_X . The expectation is $\mathbb{E}[X] := \int_{-\infty}^{\infty}$ $-\infty$ $xf_X(x)dx$ and $\mathbb{E}[g(X)] := \int_{-\infty}^{\infty}$ $-\infty$ $g(x)f_X(x)dx$

Technical Comment: assumes at most one of

$$
\int_{-\infty}^{0} |x| f_X(x) \mathrm{d}x
$$

and

$$
\int_0^\infty x f_X(x) \mathrm{d} x
$$

is infinite.

Linearity of expectation:

$$
\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]
$$

as before.

Claim. $X \geq 0$. Then

$$
\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) \mathrm{d}x
$$

Proof.

$$
\mathbb{E}[X] = \int_0^\infty x f_X(x) dx
$$

=
$$
\int_0^\infty \left(\int_0^x 1 du\right) f_X(x) dx
$$

=
$$
\int_0^\infty du \int_u^\infty dx f_X(x)
$$

=
$$
\int_0^\infty du \mathbb{P}(X \ge u)
$$

Start of lecture 18

Variance:

$$
Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2
$$

$$
Var(aX + b) = a^2 Var(X)
$$

Examples

Uniform: $U \sim U[a, b]$.

$$
\mathbb{E}[U] = \int_{a}^{b} x \frac{\mathrm{d}x}{b-a} = \frac{\frac{1}{2}b^2 - \frac{1}{2}a^2}{b-a} = \frac{a+b}{2}
$$

$$
\mathbb{E}[U^2] = \int_{a}^{b} x^2 \frac{\mathrm{d}x}{b-a} = \frac{\frac{1}{3}b^3 - \frac{1}{3}a^3}{b-a} = \frac{1}{3}(a^2 + ab + b^2)
$$

$$
\text{Var}(U) = \frac{1}{3}(a^2 + ab + b^2) - \left(\frac{a+b}{2}\right)^2
$$

$$
= \frac{(b-a)^2}{12}
$$

 \Box

Exponential: $X \sim \text{Exp}(\lambda)$.

$$
\mathbb{E}[X] = \int_0^\infty \lambda x e^{-\lambda x} dx
$$

\n
$$
= [-xe^{-\lambda x}]_0^\infty + \int_0^\infty e^{-\lambda x} dx
$$

\n
$$
= \frac{1}{\lambda}
$$

\n
$$
E[X^2] = \int_0^\infty \lambda x^2 e^{-\lambda x} dx
$$

\n
$$
= [-x^2 e^{-\lambda x}]_0^\infty + 2 \int_0^\infty x e^{-\lambda x} dx
$$

\n
$$
= 0 + \frac{2}{\lambda^2}
$$

\n
$$
\text{Var}(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2}
$$

\n
$$
= \frac{1}{\lambda^2}
$$

Goal: $U \sim \text{Unif}[a, b], \tilde{U} \sim \text{Unif}[0, 1].$ Write $U = (b - a)\tilde{U} + a$, and carry all calculations over.

Transformations of Continuous Random Variables

Goal: View $g(X)$ as a continuous random variable with its own density.

Theorem. • X continuous random variable with density f

• $g : \mathbb{R} \to \mathbb{R}$ continuous such that

(i) g is either strictly increasing or decreasing

(ii) g^{-1} is differentiable

Then $g(X)$ is a continuous random variable with density

$$
\hat{f}(x) = f(g^{-1}(x)) \underbrace{\left| \frac{d}{dx} g^{-1}(x) \right|}_{\text{(t)}}
$$
\n
$$
(*)
$$

(† is ≥ 0 if g is strictly increasing).

Comments

- Density is? Something to integrate over to get a probability
- (∗) is integration by substitution

• Proof use CDFs (which are probabilities).

Proof.

$$
F_{g(X)}(x) = \mathbb{P}(g(X) \le x)
$$

=
$$
\mathbb{P}(X \le g^{-1}(x))
$$

=
$$
F_X(g^{-1}(X))
$$

Differentiate:

$$
F'_{g(X)}(x) = F'_X(g^{-1}(x)) \frac{d}{dx} g^{-1}(x)
$$

$$
= f(g^{-1}(x)) \frac{d}{dx} g^{-1}(x)
$$

 $(g \text{ strictly decreasing is similar} \rightarrow \text{exercise (revision!}))$

Sanity check: We've got two expressions for $\mathbb{E}[g(x)]$ (assume: $\text{Im}(X) = \text{Im}(g(X)) =$ $\overline{(-\infty,\infty)}$) new expression:

$$
\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} x \hat{f}(x) dx
$$

=
$$
\int_{-\infty}^{\infty} x f(g^{-1}(x)) \frac{d}{dx} g^{-1}(x) dx
$$

Substitute: $g^{-1}(x) = u$. So $du = dx \frac{d}{dx}$ $\frac{\mathrm{d}}{\mathrm{d}x}g^{-1}(x).$

$$
= \int_{u=-\infty}^{\infty} g(u)f(u) \mathrm{d}u
$$

Example.
$$
\bullet X \sim \text{Exp}(\lambda), Y = cX.
$$
\n $\mathbb{P}(Y \leq x) = \mathbb{P}\left(X \leq \frac{X}{c}\right) = 1 - e^{-\lambda \frac{x}{c}} = 1 - e^{-\frac{\lambda}{c}x} = \text{CDF of } \text{Exp}\left(\frac{\lambda}{c}\right)$ \n $\bullet \hat{f}(x) = \frac{1}{c}f\left(\frac{x}{c}\right) = \frac{1}{c}\lambda e^{-\lambda \frac{x}{c}} = \frac{\lambda}{c}e^{-\frac{\lambda}{c}x}.$

 \Box

Example. The *Normal* Distribution (also *Gaussian*). Range: $(-\infty, \infty)$. Two parameters: $\mu \in (-\infty, \infty), \sigma^2 \in (0, \infty)$. (the mean and variance).

$$
X \sim \mathcal{N}(\mu, \sigma^2)
$$

$$
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

Special case: "Standard normal": $Z \sim N(0, 1)$

$$
f_Z(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} =: \varphi(x)
$$

Comments

- \bullet $\frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}$ is a "normalising constant". (Recall we need $\int f dx = 1$).
- $e^{-\frac{x^2}{2}}$ = very rapid decay as $x \to \pm \infty$.
- N(μ, σ^2) used for modelling non-negative quantity. (because if μ is large $\mathbb{P}(N(\mu, \sigma^2)$ < 0) is very small).

Checklist

(Z, standard normal)

(i) f_Z is a density. Proof.

$$
I = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx
$$

Clever idea: use I^2 instead

$$
I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{u^{2}}{2}} e^{-\frac{v^{2}}{2}} du dv = \iint e^{-\frac{u^{2} + v^{2}}{2}} du dv
$$

Polar coordinates: $u = r \cos \theta$, $v = r \sin \theta$:

$$
= \int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} r e^{-\frac{r^2}{2}} dr d\theta = 2\pi \int_{r=0}^{\infty} r e^{-\frac{r^2}{2}} dr = 2\pi
$$

 \Box

(ii) $\mathbb{E}[Z] = 0$ by symmetry.

(iii) $Var(Z) = 1$. *Proof.* Sufficient to prove $\mathbb{E}[Z^2] = 1$.

$$
\mathbb{E}[Z^2] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}} dx
$$

\n
$$
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \cdot xe^{-\frac{x^2}{2}} dx
$$

\n
$$
= \left[-x \cdot \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \right]_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx
$$

\n
$$
= 1
$$

 \Box

Start of \quad lecture 19 \qquad Studying $\mathrm{N}(\mu,\sigma^2)$ via linear transformations Facts about $X \sim N(\mu, \sigma^2)$:

- (i) X has the same distribution as $\mu + \sigma Z$ where $Z \sim N(0, 1)$.
- (ii) X has CDF

$$
F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)
$$

Notation. Φ is the CDF of $N(0, 1)$

(iii)
$$
\mathbb{E}[X] = \mu
$$
, $\text{Var}(X) = \sigma^2$.

Proof.

(i) $g(z) = \mu + \sigma z$ so $g^{-1}(x) = \frac{x-\mu}{\sigma}$. Then $g(Z)$ has density

$$
= \frac{1}{\sigma} f_Z \left(\frac{x - \mu}{\sigma} \right)
$$

$$
= \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}
$$

(ii)
$$
F_{g(Z)}(x) = \mathbb{P}(g(Z) \le x) = \mathbb{P}\left(Z \le \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right).
$$

(iii) Use part (i):

$$
\mathbb{E}[X] = \mathbb{E}[\mu + \sigma Z] = \mu + \sigma \mathbb{E}[Z] = \mu
$$

$$
\text{Var}(\mu + \sigma Z) = \sigma^2 \text{Var}(Z) = \sigma^2
$$

Usage: $X \sim N(\mu, \sigma^2)$

$$
\mathbb{P}(a \le X \le b) = \mathbb{P}\left(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)
$$

$$
= \mathbb{P}\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)
$$

$$
= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)
$$

Special case:

 $a = \mu - k\sigma$, $b = \mu + k\sigma$

 $(k \in \{1, 2, \dots\})$. Recall: σ is the *standard deviation*.

$$
\mathbb{P}(a \le X \le b) = \Phi(k) - \Phi(-k)
$$

"within k standard deviations of the mean".

Definition. X a continuous random variable. The median of X is the number m such that $\mathbb{P}(X \leq m) = \mathbb{P}(X \geq m) = \frac{1}{2}$, i.e.

$$
\int_{-\infty}^{m} f_X(x) dx = \int_{m}^{\infty} f_X(x) dx = \frac{1}{2}
$$

Comments

- For $X \sim N(\mu, \sigma^2)$ and other distributions symmetric about mean, we have median $m = \mathbb{E}[X].$
- Sometimes $|X m|$ better than $|X \mu|$ for interpretation.

More than one continuous Random Variables

Allow random variables to take values in \mathbb{R}^n . For example

$$
X = (X_1, \ldots, X_n) \in \mathbb{R}^n
$$

is a random variable. Say X has density $f : \mathbb{R}^n \to [0, \infty)$ if

$$
\mathbb{P}(X_1 \leq x_1, \dots, x_n \leq x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(u_1, \dots, u_n) \prod_i \mathrm{d}u_i
$$

(integrate over $(-\infty, x_1] \times \cdots \times (-\infty, x_n]$)

Consequence:

$$
\mathbb{P}((X_1,\ldots,X_n)\in A)=\int_A f(u) \mathrm{d}u
$$

for all "measurable" $A \subset \mathbb{R}^n$.

Definition. f is called a *multivariate density function* or (especially $n = 2$) a joint density.

Definition. Random variables X_1, \ldots, X_n independent if $\mathbb{P}(X_1 \le x_1, ..., X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdots \mathbb{P}(X_n \le x_n)$ (*)

Goal: convert to statement about densities.

Definition.
$$
X = (X_1, ..., X_n)
$$
 has density f. The marginal density f_{X_i} of X_i is

$$
f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, ..., x_n) \prod_{j \neq i} dx_j
$$

"density of X_i viewed as a random variable by itself".

Theorem 1. $X = (X_1, \ldots, X_n)$ has density f.

(a) if X_1, \ldots, X_n independent, with marginals f_{X_1}, \ldots, x_{X_n} . Then

$$
f(X_1,\ldots,X_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)
$$

(b) Suppose f factorises as

$$
f(X_1,\ldots,X_n)=g_1(x_1)\cdots g_n(x_n)
$$

for non-negative functions (g_i) . Then X_1, \ldots, X_n are independent and marginal $f_{X_i} \propto g_i$.

Proof.

(a)

$$
\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdots \mathbb{P}(X_n \le x_n)
$$

=
$$
\left[\int -\infty^{\infty} f_{X_1}(u_1) du_1 \right] \cdots \left[\int_{-\infty}^{\infty} f_{X_n}(u_n) du_n \right]
$$

=
$$
\int_{-\infty}^{x_1} \int_{-\infty}^{x_n} \prod f_{X_i}(u_i) \prod du_i
$$

which matches with definition of f .

(b) Idea:

• Replace
$$
g_i(x)
$$
 with $h_i(x) = \frac{g_i(x)}{\int g_i(u) \, du}$. h_i is a density.

• compute integral at (∗)

 \Box

Transformation of Multiple Random Variables

Key Example 1: X, Y independent with densities f_X, f_Y . Goal: density of $Z = X + Y$.

Step 1: Declare the joint density

$$
f_{X,Y}(x,y) = f_X(x)f_Y(y).
$$

Step 2: CDF of Z:

$$
\mathbb{P}(X + Y \le z) = \iint_{\{x+y\le z\}} f_{X,Y}(x,y) \, dx \, dy
$$
\n
$$
= \int_{x=-\infty}^{\infty} \int_{y=-\infty}^{z-x} f_X(x) f_Y(y) \, dx \, dy
$$
\n
$$
= \int_{x=-\infty}^{\infty} \int_{y'=-\infty}^{z} f_Y(y'-x) f_X(x) \, dy' \, dx \qquad \text{substitute } y' = y + x
$$
\n
$$
= \int_{y=-\infty}^{x} dy \left(\int x = -\infty^{\infty} f_Y(y-x) f_X(x) \, dx \right)
$$

So density of Z :

$$
f_Z(z) = \underbrace{\int_{x = -\infty}^{\infty} f_Y(z - x) f_X(x) dx}_{\text{Convolution of } f_X \text{ and } f_Y}
$$

Start of

lecture 20 **Note.** The discrete equivalent is $X, Y \ge 0$ independent, $\mathbb{P}(X+Y)=k)=\sum$ k $\mathbb{P}(X = l)\mathbb{P}(Y = k - l)$

Example.
$$
X, Y \stackrel{\text{IID}}{\sim} \text{Exp}(\lambda)
$$
. $Z = X + Y$.
\n
$$
f_Z(z) = \int_{x=0}^{z} \lambda^2 e^{-\lambda x} e^{-\lambda (z-x)} dx
$$
\n
$$
= \lambda^2 \int_{x=0}^{z} e^{-\lambda z} dz
$$
\n
$$
= \lambda^2 z e^{-\lambda z}
$$

Definition. $X \sim J(n, \lambda)$ Gamma distribution. $\lambda > 0$, $n \in \{1, 2, ...\}$. Range is $[0, \infty)$. Density:

 $l=0$

$$
f_X(x) = e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!}
$$

$$
n = 1 \mapsto \text{Exp}(\lambda)
$$

$$
n = 2 \mapsto \lambda^2 x e^{-\lambda x}
$$

So $X + Y \sim J(2, \lambda)$. (and in fact: $X_1 + \cdots + X_n \sim J(n, \lambda)$).

Example. $X_1 \sim N(\sigma_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2)$ independent. Then: $X_1 + X_2 \sim N(\mu_1 + \sigma_2^2)$ $\mu_2, \sigma_1^2 + \sigma_2^2$).

Note. Already know that

$$
\mathbb{E}[X_1 + X_2] = \mu_1 + \mu_2 \qquad \text{Var}(X_1 + X_2) = \sigma_1^2 + \sigma_2^2
$$

Proof.

- Calculation exercise
- Generating functions?? Coming up.

 \Box

Theorem. Let $X = (X_1, \ldots, X_n)$ on D. $g : \mathbb{R}^n \to \mathbb{R}^n$ well-behaved.

 $U = g(X) = (U_1, \ldots, U_n)$

Joint density $f_X(x)$ is continuous. Then joint density

$$
f_U(\mathbf{u}) = f_X(g^{-1}(\mathbf{u}))|J(\mathbf{u})|
$$

where

$$
J = \det \left(\left(\frac{\partial [g^{-1}]_i}{\partial u_j} \right)_{i,j=1}^n \right)
$$

"Jacobean" $(d \times d \text{ matrix})$

"Proof" Definition of multivariate integration by substitution.

 \Box

Example (Radial Symmetry). $X, Y \stackrel{\text{IID}}{\sim} N(0, 1)$. Write $(X, Y) = (R \cos \theta, R \sin \theta)$. Range: $R > 0, \theta \in [0, 2\pi)$.

$$
f_{X,Y}(x,y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}
$$

$$
= \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}
$$

Note.

$$
|\text{Jacobean of } g^{-1}| = \frac{1}{|\text{Jacobean of } g|}
$$

$$
J = \begin{vmatrix} \cos \theta & \sin \theta \\ -R \sin \theta & R \cos \theta \end{vmatrix} = R(\cos^2 \theta + \sin^2 \theta) = R
$$

So $f_{R,\theta}(r,\theta) = \frac{1}{2\pi}e^{-\frac{r^2}{2}} \times r$. Marginal:

$$
f_{\theta}(\theta) = \frac{1}{2\pi}
$$

$$
f_R(r) = e^{-\frac{r^2}{2}} \times r
$$

Conclusion: θ , R are independent. θ is uniform on $[0, 2\pi)$.

Note. Change of range: for example $X, Y \geq 0, Z = X + Y$.

$$
f_{X,Z}(x, z) = ?(x, z) 1\!\!1_{(Z \ge x)}
$$

so X, Z not independent, even if ? splits as a product.

Moment Generating Function

Definition. Let X have density f . The MGF of X is:

$$
m_X(\theta) := \mathbb{E}[e^{\theta X}] = \int_{-\infty}^{\infty} e^{\theta x} f(x) \mathrm{d}x
$$

whenever this is finite.

Note. $m_X(0) = 1$.

Theorem. The MGF uniquely determines distribution of a random variable whenever it exists for all $\theta \in (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

Theorem. Suppose $m(\theta)$ exists for all $\theta \in (-\varepsilon, \varepsilon)$. Then

$$
m^{(n)}(0) = \frac{\mathrm{d}^n}{\mathrm{d}\theta^n} m(\theta)|_{m=0} = \mathbb{E}[X^n]
$$

 $(\mathbb{E}[X^n]$ is the "*n*-th moment")

Proof comment: $\frac{\partial e^{\theta x}}{\partial \theta} = x^n e^{\theta x}$.

Claim. X_1, \ldots, X_n independent.

$$
X = X_1 + \cdots + X_n
$$

Then

$$
m_X(\theta) = \mathbb{E}[e^{\theta(X_1 + \dots + X_n)}]
$$

= $\mathbb{E}[e^{\theta X_1}] \dots \mathbb{E}[e^{\theta X_n}]$
= $\prod m_{X_i}(\theta)$
Example. Gamma distribution: $X \sim J(n, \lambda)$.

$$
f_X(x) = e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!}
$$

$$
m(\theta) = \int_0^\infty e^{\theta x} e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!} dx
$$

=
$$
\int_0^\infty e^{-(\lambda-\theta)x} x^{n-1} \frac{\lambda^n}{(n-1)!} dx
$$

=
$$
\left(\frac{\lambda}{\lambda-\theta}\right)^n \int_0^\infty e^{-(\lambda-\theta)x} x^{n-1} \frac{(\lambda-\theta)^n}{(n-1)!} dx
$$

=
$$
\left(\frac{\lambda}{\lambda-\theta}\right)^n
$$

 $(\theta < \lambda \text{ (and infinite if } \theta \geq \lambda))$

$$
Exp(\lambda) \to \left(\frac{\lambda}{\lambda - \theta}\right) MGF
$$

We've proved

$$
X_1 + \dots + X_n \sim J(n, \lambda)
$$

Start of

lecture 21 **Example.** $X \sim N(\mu, \sigma^2)$ $f_X(x) = \frac{1}{\sqrt{2}}$ $2\pi\sigma^2$ $\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $2\sigma^2$ \setminus $m_X(\theta) = \exp\left(\theta\mu + \frac{\theta^2\mu^2}{2}\right)$ 2 \setminus So $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$ independent. $m_{X_1+X_2}(\theta) = \exp\left(\theta\mu_1 + \frac{\theta^2\mu_1^2}{2}\right)$ 2 $\sum_{n=1}^{\infty} \exp \left(\theta \mu_2 + \frac{\theta^2 \sigma^2}{2} \right)$ 2 $= \exp \left(\theta(\mu_1 + \mu_2) + \frac{\theta^2}{2} \right)$ $\frac{\partial^2}{\partial^2}(\sigma_1^2+\sigma_2^2)\bigg)$

MGF of N(
$$
\mu_1 + \mu_2
$$
, $\sigma_1^2 + \sigma_2^2$)

 \setminus

Convergence of Random Variables

Definition. Let $(X_n)_{n\geq 1}$ and X be random variables. We say X_n converges to X in distribution and write $X_n \stackrel{d}{\to} X$ if

$$
F_{X_n}(x) \to F_X(x) \tag{*}
$$

for all $x \in \mathbb{R}$ which are continuity points of F_x .

Example 2.

$$
X_n = \begin{cases} 0 & \text{with } \mathbb{P} = \frac{1}{2} \\ 1 + \frac{1}{n} & \text{with } \mathbb{P} = \frac{1}{2} \end{cases}
$$

$$
X_n \to \text{Bern}\left(\frac{1}{2}\right)
$$

since $F_{X_n}(x) = \frac{1}{2}$ for all $x \in (0,1)$, $F_{X_n}(x) = 1$ for all $x > 1$. When *n* is large

$$
F_{X_n}(1) = \frac{1}{2} \qquad F_X(1) = 1
$$

But $F_X(\bullet)$ has a discontinuity at $x = 1$. (i.e. deterministic convergence of reals)

Consequences

(1) If X is a constant c , then equivalent to:

$$
\forall \varepsilon > 0 \qquad \mathbb{P}(|X_n - c| > \varepsilon) \to 0
$$

as $n \to \infty$. "convergence in probability to constant".

(2) If X is a continuous random variable: $X_n \stackrel{d}{\rightarrow} X$. Usage:

$$
\mathbb{P}(a \le X_n \le b) \to \mathbb{P}(a \le X \le b)
$$

for all $a, b \in [-\infty, \infty]$.

Note. Does not say that densities converge. For example, in Example 1 no density.

Laws of Large Numbers

 $\frac{S_n}{n}$ " \rightarrow'' μ .

Theorem (Weak LLN). Setup: $(X_n)_{n\geq 1}$ IID with $\mu = \mathbb{E}[X_1] < \infty$. Set $S_n = X_1 + \cdots + X_n \quad \forall n \geq 0$ Then $\forall \varepsilon > 0$: $\mathbb{P}\left(\bigg|\right.$ S_n $\left| \frac{S_n}{n} - \mu \right|$ $> \varepsilon$) $\rightarrow 0$ as $n \to \infty$.

Proof. (assume $\text{Var}(X_1) = \sigma^2 < \infty$)

$$
\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) = \mathbb{P}(|S_n - n\mu| > \varepsilon n)
$$

$$
\leq \frac{\text{Var}(S_n)}{\varepsilon^2 n^2}
$$

$$
= \frac{n\sigma^2}{\varepsilon^2 n^2}
$$

$$
\to 0
$$

as $n \to \infty$. (Note that ε is fixed, not $\varepsilon \to 0$!)

 \Box

Central Limit Theorem

Theorem (CLT). Same setup as previous. Demand $\sigma^2 < \infty$. Then

$$
\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \stackrel{d}{\to} \mathcal{N}(0, 1)
$$

as $n \to \infty$.

Discussion: three stage summary

- (1) Distribution of S_n concentrated on $n\mu$ (WLLN)
- (2) Fluctuations around $n\mu$ have order \sqrt{n} (New and important)
- (3) Shape is normal (Detail)

Usage:

(i) $S_n \stackrel{d}{\approx} \mathcal{N}(n\mu, n\sigma^2)$

(ii)

$$
\mathbb{P}(a \le S_n \le b) = \mathbb{P}\left(\frac{a - n\mu}{\sqrt{n\sigma^2}} \le \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \le \frac{b - n\mu}{\sqrt{n\sigma^2}}\right)
$$

$$
\approx \mathbb{P}\left(\frac{a - n\mu}{\sqrt{n\sigma^2}} \le Z \le \frac{b - n\mu}{\sqrt{n\sigma^2}}\right)
$$

Get a nice answer if $a = n\mu + z_a\sqrt{n}$ and $b = n\mu + z_b\sqrt{n}$.

Theorem (Continuity theorem for MGFs). (X_n) , X have MGFs $m_{X_n}(\bullet)$, $m_X(\bullet)$

- $m_X(\theta) < \infty$ for $\theta \in (-\varepsilon, \varepsilon)$
- if $m_{X_n}(\theta) \to m_X(\theta)$ for all θ such that $m_X(\theta) < \infty$.

Then $X_n \stackrel{d}{\to} X$.

Proof. Part II Probability and Measure.

Idea: Expand $m_X(\theta)$ as Taylor series around 0.

$$
m_X(\theta) = 1 + m'_X(0)\theta + \frac{m''_X(0)}{2!}\theta^2 + \cdots
$$

$$
= 1 + \theta \mathbb{E}[X] + \frac{\theta^2}{2} \mathbb{E}[X^2] + o(\theta^2)
$$

Proof: (WLLN via MGFs).

Remark. Know MGF of S_n . Want to study the MGF of $\frac{S_n}{n}$.

 \overline{m}

$$
\begin{aligned} \n\frac{S_n}{n}(\theta) &= \mathbb{E}[e^{\theta \frac{S_n}{n}}] \\ \n&= \mathbb{E}[e^{\frac{\theta}{n} S_n}] \\ \n&= m_{S_n} \left(\frac{\theta}{n}\right) \\ \n&= m_{X_1} \left(\frac{\theta}{n}\right) \cdots m_{X_n} \left(\frac{\theta}{n}\right) \\ \n&= \left(1 + \mu \frac{\theta}{n} + o(\theta)\right)^n \\ \n&\to e^{\mu \theta} \n\end{aligned}
$$

MGF of the random variable $X = \mu$ with $\mathbb{P} = 1$. So $\frac{S_n}{n}$ $\stackrel{d}{\rightarrow}$ μ by the continuity theorem.

Theorem (Strong LLN). Same setup: Then

$$
\mathbb{P}\left(\frac{S_n}{n} \to \mu \text{ as } n \to \infty\right) = 1.
$$

"almost sure convergence" or "convergence with probability 1".

Start of lecture 22 *Proof (CLT with MGFs).* Assume WLOG $\mu = 0$ and $\sigma^2 = 1$. (So $\mathbb{E}[X_i^2] = 1$). (In general $X \mapsto \frac{X-\mu}{\sqrt{\sigma^2}}$). Goal:

$$
\frac{S_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{N}(0, 1)
$$

Study MGF of $\frac{S_n}{\sqrt{n}}$ $\frac{n}{n}$.

$$
m_{X_i}(\theta) = 1 + \frac{\theta^2}{2} + o\left(\frac{1}{n}\right)
$$

\n
$$
m_{\frac{S_n}{\sqrt{n}}}(\theta) = \mathbb{E}[e^{\frac{\theta}{\sqrt{n}}}]
$$

\n
$$
= \mathbb{E}[e^{\frac{\theta}{\sqrt{n}}S_n}]
$$

\n
$$
= m_{S_n}\left(\frac{\theta}{\sqrt{n}}\right)
$$

\n
$$
= \left(m_{X_1}\left(\frac{\theta}{\sqrt{n}}\right)\right)^n
$$

\n
$$
= \left(1 + \frac{\theta^2}{2n} + o\left(\frac{1}{n}\right)\right)^n
$$

\n
$$
\rightarrow e^{\frac{\theta^2}{2}}
$$

Inequalities for $\mathbb{E}[f(X)]$ Motivation: $f(x) = x^2$. We know

$$
\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])
$$

via $\text{Var}(X) \geq 0$. What about general f ?

Consequence: $\forall y$ there exists a line $l(x) = mx + c$ such that

• $l(x) \leq f(x)$ for all x

$$
\bullet \ \ l(y) = f(y)
$$

Proof. Convexity implies that for all $x < y < z$,

$$
\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y}
$$

hence

$$
M^{-} := \sup_{x < y} \frac{f(y) - f(x)}{y - x} \le \inf_{z > y} \frac{f(z) - f(y)}{z - y} =: M^{+}
$$

any value $m\in [M^-,M^+]$ works as the gradient of $l(\bullet).$

$$
\Box
$$

<u>Fact</u>: if f is twice differentiable then

 f convex $\iff f''(x) \geq 0 \forall x$

for example $f(x) = \frac{1}{x}$ is convex on $(0, \infty)$ and concave on $(-\infty, 0)$.

Jensen's Inequality

Theorem (Jensen's Inequality). X a random variable, f convex: Then $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$. (reverse if f concave)

Proof. Set $y = \mathbb{E}[X]$ as in (*), $l(x) = mx + c$, such that $l(y) = f(y) = f(\mathbb{E}[X])$ and $f \ge l$.

$$
\mathbb{E}[f(X)] \geq \mathbb{E}[l(X)]
$$

= $\mathbb{E}[mX + c]$
= $m\mathbb{E}[X] + c$
= $my + c$
= $f(\mathbb{E}[X])$

If f strictly convex, then $\forall t \in (0,1), \forall x \neq y$,

$$
f(tx + (1 - t)y) < tf(x) + (1 - t)f(y)
$$

Then equality in Jensen's inequality only if $X = \mathbb{E}[X]$ with $\mathbb{P} = 1$ (for example constant random variable). \Box

Informal comment:

Jensen's Inequality \geq Most other inequalities!

Application to Sequences

AM-GM inequality: $x_1, \ldots, x_n \in (0, \infty)$

$$
\frac{x_1 + \dots + x_n}{n} \ge \left(\prod_{i=1}^n x_i\right)^{1/n}
$$

Case $n = 2$:

$$
\frac{x+y}{2} \ge \sqrt{xy}
$$

Proof. Rearrange to get $(x - y)^2 \geq 0$.

General proof:

Let X be a random variable taking values $\{x_1, \ldots, x_n\}$ each with probability $\frac{1}{n}$. Take: $f(x) = -\log x$. Check convex: second derivative ≥ 0 . Jensen:

$$
\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])
$$

$$
-\frac{\log x_1 + \dots + \log x_n}{n} \ge -\log\left(\frac{x_1 + \dots + x_n}{n}\right)
$$

$$
\log((x_1 \dots x_n)^{1/n}) \le \log\left(\frac{x_1 + \dots + x_n}{n}\right)
$$

 $\log x$ and e^x are increasing so

$$
\left(\prod_i x_i\right)^{1/n} \le \frac{x_1 + \dots + x_n}{n}
$$

Sampling a Continuous Random Variable

Theorem. X a continuous random variable with CDF F. Then if $U \sim U[0, 1]$, we have

$$
Y = F^{-1}(U) \sim X
$$

Proof. Goal: find CDF of Y.

$$
\mathbb{P}(Y \le x) = \mathbb{P}(F^{-1}(U) \le x)
$$

$$
= \mathbb{P}(U \le F(x))
$$

$$
= F(x)
$$

so CDF of $Y =$ CDF of X. So $Y \sim X$.

Rejection Sampling

Idea: Uniform on $[0,1]^d$ is easy. (take $(U^{(1)},...,U^{(d)})$ IID on $U[0,1]$.)

What about uniform on A? Goal:

$$
f(x) = \begin{cases} \frac{1}{\text{area}(A)} & x \in A \\ 0 & x \notin A \end{cases}
$$

(in higher dimensions, volume $(A)^{-1}$)

Rewrite as

Start of lecture 23

$$
f(x) = \frac{\mathbb{1}_A}{\text{area}(A)}
$$

Let U_1, U_2, \ldots IID uniform on $[0, 1]^d$ and let $N = \min\{n : U_n \in A\}.$

Claim. U_N is uniform on A. (i.e. has density f)

Proof. Note $\mathbb{P}(N < \infty) = 1$ if $area(A) > 0$. Goal:

$$
\mathbb{P}(U_n \in B) = \int_B f(x) \mathrm{d}x = \frac{\text{area}(B)}{\text{area}(A)}
$$

for all $B\subset A$ with a well-defined area.

$$
\mathbb{P}(U_n \in B) = \sum_{n \ge 1} \mathbb{P}(U_n \in B, N = n)
$$

=
$$
\sum_{n \ge 1} \mathbb{P}(U_1 \notin A, \dots, U_{n-1} \notin A, U_n \in B)
$$

=
$$
\sum_{n \ge 1} \mathbb{P}(U_1 \notin A)^{n-1} \mathbb{P}(U_n \in B)
$$

=
$$
\sum_{n \ge 1} (1 - \text{area}(A))^{n-1} \times \text{area}(B)
$$

=
$$
\frac{\text{area}(B)}{1 - (1 - \text{area}(A))}
$$

=
$$
\frac{\text{area}(B)}{\text{area}(A)}
$$

 \Box

Idea: X a continuous random variable on $[0, 1]$, density f is *bounded*. Let

$$
A = \{(x, y) : x \in [0, 1], y \le f_X(x)\}
$$

i.e. shaded region

Let $U = (U^{(1)}, U^{(2)})$ be uniform on A. Then claim: $U^{(1)} \sim X$. Why?

$$
\mathbb{P}(U^{(1)} \le u) = \mathbb{P}(\text{in relevant area})
$$

= area({x, y} : x \le u, y \le f_X(x))
= $\int_0^u f_X(x) dx$
= $F_X(u)$

(note that the first and last expressions are the CDFs of $U^{(1)}$ and X respectively) Usage: in higher dimension.

X a continuous random variable on $[-K, K]^d$ with density bounded. Let

 $A = \{(\mathbf{x}, y) : x \in [-K, K]^d, y \le f_X(x)\} \subset \mathbb{R}^{d+1}$

Let $U = (\mathbf{U}, U^+)$. Then $\mathbf{U} \sim X$. (the proof is similar).

Multivariate Normals / Gaussians

Definition. A random variable is *Gaussian* if $X \sim N(\mu, \sigma^2)$.

Motivation: X, Y independent Gaussian. Then $bX + cY$ is Gaussian (*). Exercise: there exist joint random variables (X, Y) such that both X, Y are Gaussian, but $X + Y$ not Gaussian.

Question: Can we have dependent X, Y such that $(*)$ still holds?

Definition. Random vector (X, Y) is *Gaussian* if $bX + cY$ are Gaussian for all $b, c \in \mathbb{R}$, i.e. $bX + cY \sim N(??, ??$).

Consequences:

$$
\mathbb{E}[bX + cY] = b\mathbb{E}[X] + c\mathbb{E}[Y]
$$

$$
\text{Var}(bX + cY) = b^2 \text{Var}(X) + c^2 \text{Var}(Y) + 2bc \text{Cov}(X, Y)
$$

Linear Algebra Rewrite

Random vector $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ is *Gaussian* if $u^\top X$ is Gaussian $\forall u \in \mathbb{R}^n$. Write $\mu = \mathbb{E}[X] \in \mathbb{R}^n$.

Covariance matrix:

$$
V = (\text{Cov}(X_i, X_j))_{i,j=1}^n \in \mathbb{R}^n \times \mathbb{R}^n
$$

i.e. for $n = 2$:

$$
V = \begin{pmatrix} \text{Var}(X) & \text{Cov}(X, Y) \\ \text{Cov}(Y, X) & \text{Var}(Y) \end{pmatrix}
$$

(note V is symmetric). In fact $u^{\top} X \sim N(u^{\top} \mu, u^{\top} V u)$.

MGFs in One Direction (Recap)

Distribution of $X \in \mathbb{R}$ determined by function $m_X(\theta) = \mathbb{E}[e^{\theta X}]$, $\theta \in (-\varepsilon, \varepsilon)$.

MGFs in \mathbb{R}^n

Distribution of $X \in \mathbb{R}^n$ determined by

$$
m_X(u) = \mathbb{E}[e^{u^\top X} \quad u \in (-\varepsilon, \varepsilon)^n
$$

If X Gaussian, then

$$
m_X(u) = \exp\left(u^\top \mu + \frac{1}{2} u^\top V u\right)
$$

Logical overview: $X \in \mathbb{R}^n$ Gaussian

- distribution defined by MGF
- MGF defined by μ and V

 \implies distribution of X defined by μ and V

Remark. Density:

$$
f_X(x) = \frac{1}{(2\pi)^{n/2}} \frac{1}{\sqrt{\det(V)}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} V(x-\mu)\right)
$$

Return to $n = 2$: For a Gaussian vector (X_1, X_2)

Independent \iff Cov $(X_1, X_2) = 0$

(Note that the backwards direction is not true in general!)

Why useful? Imagine X_1, X_2 describe real-world parameters, for example height vs 1km running time.

- Independence would be an interesting conclusion
- $Cov(?, ?)$ can be sampled.

Start of *Proof.* $X = (X_1, X_2)$ independent. If $m_X((u_1, u_2))$ splits as a product $f_1(u_1)f_2(u_2)$. In our setting:

$$
\exp(u^\top \mu) = \exp(u_1 \mu_2) \exp(u_2 \mu_2)
$$

$$
\exp\left(\frac{1}{2} u^\top V u\right) = \exp(u_1^2 \sigma_1^2) \exp(u_2^2 \sigma_2^2) \exp(2u_1 u_2 \text{Cov}(X_1, x_2))
$$

So it splits as a product if and only if $Cov = 0$.

Motivation: $Cov(100X_1, X_2) = 100Cov(X_1, X_2)$ so "large covariance" doesn't imply "very dependent".

lecture 24

Definition. Correlation of X, Y is

$$
Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}
$$

(It is a fact that this is always $\in [-1, 1]$)

Proposition. If (X, Y) Gaussian, then $Y = aX + Z$ where Z is Gaussian, and (X, Z) independent.

Proof. Define $Z = Y - aX$ for $a \in \mathbb{R}$.

Claim. (X, Z) is Gaussian.

Proof.

$$
u_1X + u_2Z = u_1X + u_2(Y - aX) = (u_1 - au_2)X + u_2Y.
$$

 \Box

 \Box

Goal: find a such that $Cov(X, Z) = 0$.

$$
Cov(X, Z) = Cov(X, Y - aX) = Cov(X, Y) - aVar(X)
$$

so take

$$
a = \frac{\text{Cov}(X, Y)}{\text{Var}(X)}
$$

Then $Cov(X, Z) = 0$ so X, Z independent.

2.1 Two Historical Models

Bertrand's Paradox

Goal: choose a uniform chord of circle. Two methods:

- (i) A, B uniform on circumference.
- (ii) midpoint M uniform on disc.

Conclusion: Gives different distributions. (Completely unsurprising?)

Method (i)

 $\theta \sim \text{Unif } [0, \frac{\pi}{2}]$ $\frac{\pi}{2}$ then $|AB| = 2r \sin \theta$. Note $|OM| = r \cos \theta$, so $\mathbb{P}(|OM| \leq \varepsilon r) \approx r \varepsilon$ when $\varepsilon \rightarrow 0.$

Method (ii) $\mathbb{P}(|OM| \leq \varepsilon r) = \frac{\pi(\varepsilon r)^2}{\pi r^2} = \varepsilon^2.$

Buffon's Needle

- $\bullet\,$ Lines spaced L apart.
- $\bullet\,$ Needle length L dropped "uniformly"
- Observe whether intersects a line.

We work "modulo L ":

Angle $\theta \sim \text{Unif}[0, \pi)$

Density of (X, θ) constant $= \frac{1}{L\pi}$. Crosses line if

$$
X \leq \frac{L}{2}\sin\theta
$$

or

$$
L - X \le \frac{L}{2} \sin \theta
$$

$$
\mathbb{P}(\text{crosses line}) = \mathbb{P}\left(\min(X, L - X) \le \frac{L}{2} \sin \theta\right)
$$

$$
= 2\mathbb{P}\left(X \le \frac{L}{2} \sin \theta\right)
$$

$$
= 2\int_{\theta=0}^{\pi} \int_{x=0}^{\frac{L}{2} \sin \theta} \frac{1}{L\pi} dx d\theta
$$

$$
= 2\int_{\theta=0}^{\pi} \frac{1}{2\pi} \sin \theta d\theta
$$

$$
= \frac{2}{\pi}
$$

$$
\approx 0.64
$$

What's the point? Calculate π experimentally. Efficiency? Try *n* times. Number of intersections: $S_n \sim \text{Bin}(n, \frac{\pi}{2})$. Proportion \hat{p}_n of intersections = $\frac{S_n}{n}$. By CLT:

so

$$
\hat{p}_n = p + \sqrt{\frac{p(1-p)}{n}} Z
$$

$$
\hat{p}_n - p \approx \sqrt{\frac{p(1-p)}{n}} Z.
$$

Estimate:

$$
\hat{\pi}_n = \frac{2}{\hat{p}_n}
$$

Taylor expanding:

$$
\hat{\pi}_n = \frac{2}{\hat{p}_n}
$$

$$
\approx \frac{2}{p} - (\hat{p}_n - p)\frac{2}{p^2}
$$

so

$$
\hat{\pi}_n - \pi \approx -\frac{\pi^2}{2} \sqrt{\frac{p(1-p)}{n}} Z \approx \frac{-2.4}{\sqrt{n}} Z
$$

So if you seek

$$
\hat{\pi}_n - \pi \approx O(10^{-k})
$$

(correct to k decimal places) then we need $n \approx 10^{2k}$.

- Historical interest.
- Not computationally efficient.
- Detailed calculation of sampling errors in other settings on problem sheet.