Probability

April 13, 2022

Contents

1 Formal Setup			
	1.1	From the axioms	3
	1.2	Examples of Probability Spaces	4
	1.3	Choosing uniformly from infinite countable set	5
	1.4	Combinatorial Analysis	5
2 Discrete Random Variables		crete Random Variables	23
	2.1	Two Historical Models	86

Start of lecture 1

Example 0. Dice: outcomes $1, 2, \ldots, 6$.

- $\mathbb{P}(2) = \frac{1}{6}$
- $\mathbb{P}($ multiple of $3) = \frac{2}{6} = \frac{1}{3}.$

•
$$\mathbb{P}(\text{prime or a multiple of } 3) = \frac{1}{3} + \frac{1}{2} = \frac{3}{6}$$

= $\frac{4}{6} = \frac{2}{3}$
= $\frac{1}{3} + \frac{1}{2} - \mathbb{P}(\text{prime and a multiple of } 3)$
= $\frac{1}{3} + \frac{1}{2} - \frac{1}{6} = \frac{2}{3}$

• $\mathbb{P}(\text{not a multiple of } 3) = \frac{2}{3}$.

1 Formal Setup

Definition. • Sample space Ω, a set of outcomes.
F a collection of subsets of Ω (called events).
F is a σ-algebra ("sigma-algebra") if: F1 Ω ∈ F F2 if A ∈ F then A^c ∈ F (A^c := Ω \ A) F3 ∀ countable collections (A_n)_{n≥1} in F the union U_{n≥1} A_n ∈ F also.

Given σ -algebra \mathcal{F} on Ω , function $\mathbb{P} : \mathcal{F} \to [0, 1]$ is a *probability measure* if P2 $\mathbb{P}(\Omega) = 1$

P3 \forall countable collections $(A_n)_{n\geq 1}$ of disjoint events in \mathcal{F} :

$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n\right) = \sum_{n\geq 1}\mathbb{P}(A_n).$$

(P1 was historically taken to state that $\mathbb{P}(A) \ge 0$, but this is already captured by the notation $\mathbb{P} : \mathcal{F} \to [0,1]$).

Then $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

Revisiting dice example

For a dice we have:

$$\Omega = \{1, 2, \dots, 6\}$$

$$\mathbb{P}(1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } 6) = 1.$$

$$\mathcal{F} = \mathcal{P}(\Omega)$$

Question: Why $\mathbb{P} : \mathcal{F} \to [0,1]$ not $\mathbb{P} : \Omega \to [0,1]$? Ω finite / countable

- In general: $\mathcal{F} = \text{all subsets of } \Omega$. $(\mathbb{P}(\Omega))$.
- $\mathbb{P}(2)$ is shorthand for $\mathbb{P}(\{2\})$.
- \mathbb{P} is determined by $(\mathbb{P}(\{\omega\}), \forall \omega \in \Omega)$. (eg unfair dice)

Ω uncountable

- For example $\Omega = [0, 1]$. Want to choose a real number, all equally likely.
- If $\mathbb{P}(\{0\}) = \alpha > 0$, then

$$\mathbb{P}\left(\left\{0,1,\frac{1}{2},\ldots,\frac{1}{n}\right\}\right) = (n+1)\alpha$$

 \bigotimes if *n* large as $\mathbb{P} > 1$.

- So $\mathbb{P}(\{0\}) = 0$, or $\mathbb{P}(\{0\})$ is undefined.
- What about $\mathbb{P}(\{x : x \leq \frac{1}{3}\})?$ - ? "Add up" all $\mathbb{P}(\{x\})$ for $x \leq \frac{1}{3}$.

Example. $\Omega = \{f : \text{continuous on } [0,1] \to \mathbb{R}, f(0) = 1\}$. What is $\mathbb{P}(\text{differentiable})$?

1.1 From the axioms

- $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$. *Proof.* A, A^c are disjoint. $A \cup A^c = \Omega$ and hence $\mathbb{P}(A) + \mathbb{P}(A^c) \stackrel{P3}{=} \mathbb{P}(\Omega) \stackrel{P2}{=} 1$
- $\mathbb{P}(\emptyset) = 0.$
- If $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B).$

1.2 Examples of Probability Spaces

 Ω finite, $\Omega = \{\omega_1, \ldots, \omega_n\}, \mathcal{F} = \text{all subsets uniform choice (equally likely)}.$

$$\mathbb{P}: \mathcal{F} \to [0,1], \quad \mathbb{P}(A) = \frac{|A|}{|\Omega|}.$$

In particular:

$$\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|} \ \forall \ \omega \in \Omega.$$

Example 1. Choosing without replacement n indistinguishable marbles labelled $\{1, \ldots, n\}$. Pick $k \leq n$ marbles uniformly at random. Here:

$$\Omega = \{A \subseteq \{1, \dots, n\} : |A| = k\} \qquad |\Omega| = \binom{n}{k}$$

Example 2. Well-shuffled deck of cards. Uniformly chosen *permutation* of 52 cards. $\Omega = \{ \text{all permutation of 52 cards} \} \qquad |\Omega| = 52!$ $\mathbb{P}(\text{first three cards have the same suit}) = \frac{52 \times 12 \times 11 \times 49!}{52!} = \frac{22}{425}$ Note: $= \frac{12}{51} \times \frac{11}{50}$.

Start of lecture 2

Example 3 (Coincident Birthdays). *n* people. What is the probability that at least two share a birthday? Assumptions:

- No leap years! (365 days)
- All birthdays equally likely.

Now note that

$$\Omega = \{1, \dots, 365\}^n \qquad \mathcal{F} = \mathcal{P}(\Omega)$$

$$A = \{\text{at least 2 people share a birthday}\}$$

$$A^c = \{\text{all } n \text{ birthdays different}\}$$

$$\mathbb{P}(A^c) = \frac{|A^c|}{|\Omega|} = \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$
so
$$\mathbb{P}(A) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

$$\left\{ \begin{array}{l} n = 22: \quad \mathbb{P}(A) \approx 0.476\\ n = 23: \quad \mathbb{P}(A) \approx 0.507 \end{array} \right.$$

$$n \ge 366: \ \mathbb{P}(A) = 1.$$

 \mathbf{SO}

1.3 Choosing uniformly from infinite countable set

(For example $\Omega = \mathbb{N}$ or $\Omega = \mathbb{Q} \cap [0, 1]$) Suppose possible, then

• $\mathbb{P}(\{\omega\}) = \alpha > 0 \ \forall \ \omega \in \Omega$. Then

$$\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} \alpha = \infty \qquad \bigotimes$$

• $\mathbb{P}(\{\omega\}) = 0 \ \forall \ \omega \in \Omega$. Then

$$\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} 0 = 0 \qquad \bigotimes$$

Note possible, but still, there exist lots of interesting probability measures of $\mathbb{N}!$

1.4 Combinatorial Analysis

Subsets: Ω finite. $|\Omega| = n$. Question: How many ways to partition Ω into k disjoint subsets $\Omega_1, \ldots, \Omega_k$ with $|\Omega_i| = n_i$

$$(\text{with } \sum_{i=1}^{k} n_i = n)?$$

$$M = \binom{n}{1} \binom{n-n_1}{n_2} \binom{n-n_1-n_2}{n_3} \cdots \binom{n-(n_1+\dots+n_{k-1})}{n_k}$$

$$= \frac{n!}{n_1! (n-n_1)!} \times \underbrace{\frac{(n-n_1)!}{n_2! (n-n_1-n_2)!}}_{n_2! (n-n_1-n_2)!} \times \cdots \times \underbrace{\frac{[n-(n_1+\dots+n_{k-1})]!}{n_k! 0!}}_{n_k! 0!}$$

$$= \frac{n!}{n_1! n_2! \cdots n_k!}$$

$$=: \binom{n}{n_1, n_2, \dots, n_k}$$

Key sanity check: Does ordering of subsets matter? For example, do we have

$$\left[\Omega_2 = \{3, 4, 7\}, \Omega_3 = \{1, 5, 8\}\right] \stackrel{\text{different}}{=} \left[\Omega_2 = \{1, 5, 8\}, \Omega_3 = \{3, 4, 7\}\right]?$$

Yes!

Random Walks

$$\Omega = \{ (X_0, X_1, \dots, X_n) : X_0 = 0, |X_k - X_{k-1}| = 1, k = 1, \dots, n \} \qquad |\Omega| = 2^n.$$

Could ask: $\mathbb{P}(X_n = 0)$?

$$\mathbb{P}(X_n = n) = \frac{1}{2^n}$$
$$\mathbb{P}(X_n = 0) = 0 \quad \text{if } n \text{ is odd}$$

If n is even?

Idea - Choose $\frac{n}{2}$ ks for $X_k = X_{k-1} + 1$ and the rest $X_k = X_{k-1} - 1$. So

$$\mathbb{P}(X_n = 0) = 2^{-n} \binom{n}{n/2}$$
$$= \frac{n!}{2^n \left[\left(\frac{n}{2}\right)! \right]^2}$$

Question: What happens when n is large?

Stirling's Formula

Notation. (a_n) , $(b_n 0$ two sequences.

Say $a_n \sim b_n$ as $n \to \infty$ if $\frac{a_n}{b_n} \to 1$ as $n \to \infty$. For example, $n^2 + 5n + \frac{6}{n} \sim n^2$. Non-example: $\exp\left(n^2 + 5n + \frac{6}{n}\right) \not\sim \exp(n^2)$.

 $n! \sim \sqrt{2\pi} n^{n+1/2} e^{-n}$

Theorem (Stirling). as $n \to \infty$.

Weaker version:

 $\log(n!) \sim n \log n.$

Proof (weaker version).

Start of lecture 3

$$\log(n!) = \log 2 + \log 3 + \dots + \log n.$$

Hence $\log(n!) \sim n \log n$.

Key idea: Sandwiching between lower/upper integrals. Useful:

- $\log x$ is increasing
- $\log x$ has nice integral!

(Ordered) Compositions

A composition of m with k parts is sequence (m_1, \ldots, m_k) of non-negative integers with

$$m_1 + \dots + m_k = m.$$

For example, 3+0+1+2=6. Bijection between compositions and sequences of m stars and k-1 dividers (stars and bars). So number of compositions is $\binom{m+k-1}{m}$. Comments: Q11 on example sheet 1.

Properties of Probability Measures

 $(\Omega, \mathcal{F}, \mathbb{P}) \leftarrow \text{Probability space}$

• P1:

$$\mathbb{P}: \mathcal{F} \to [0,1]$$

- P2: $\mathbb{P}(\Omega) = 1$.
- P3:

$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n\right) = \sum_{n\geq 1}\mathbb{P}(A_n)$$

 $(A_n)_{n\geq 1}$ disjoint. "Countable additivity".

(1) Countable sub-additivity

 $(A_n)_{n\geq 1}$ sequence of events in \mathcal{F} . Then

$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n\right)\leq \sum_{n\geq 1}\mathbb{P}(A_n).$$

Intuition: this sum can "double count" some sub-events.

Proof. Idea: rewrite $\bigcup_{n\geq 1} A_n$ as a *disjoint* union. Define $B_1 = A_1$ and $B_n = A_n \setminus (A_1 \cup \cdots \cup A_{n-1})$ for $n \geq 2$ (which is in \mathcal{F} by example sheet). So

- $\bigcup_{n\geq 1} B_n = \bigcup_{n\geq 1} A_n$
- $(B_n)_{n>1}$ disjoint (by construction)
- $B_n \subseteq A_n \implies \mathbb{P}(B_n) \le \mathbb{P}(A_n)$ (by example sheet)

Hence

$$\mathbb{P}\left(\bigcup_{n\geq 1} A_n\right) = \mathbb{P}\left(\bigcup_{n\geq 1} B_n\right) = \sum_{n\geq 1} \mathbb{P}(B_n) \le \sum_{n\geq 1} \mathbb{P}(A_n).$$

(1) Continuity

 $(A_n)_{n\geq 1}$ is increasing sequence of events in \mathcal{F} i.e. $A_n \subseteq A_{n+1}$. Then $\mathbb{P}(A_n) \leq \mathbb{P}(A_{n+1})$. So $\mathbb{P}(\overline{A}_n)$ converges as $n \to \infty$. (Because bounded and increasing.) In fact, $\lim_{n\to\infty} \mathbb{P}(A_n) =$ $\mathbb{P}\left(\bigcup_{n\geq 1}A_n\right).$ *Proof.* Re-use the B_n s!

• $\bigcup_{k=1}^{n} B_k = A_n$ (disjoint union)

•
$$\bigcup_{n>1} B_n = \bigcup_{n>1} A_n$$

$$\mathbb{P}(A_n) = \sum_{k=1}^n \mathbb{P}(B_k) \to \sum_{k \ge 1} \mathbb{P}(B_k)$$
$$\mathbb{P}\left(\bigcup_{n \ge 1} A_n\right) = \mathbb{P}\left(\bigcup_{n \ge 1} B_n\right) = \sum_{n \ge 1} \mathbb{P}(B_n)$$

1	

Try Q6.

(3) Inclusion-Exclusion Principle

Background: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B).$ Similarly: for $A, B, C \in \mathcal{F}$

 $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(C \cap A) + \mathbb{P}(A \cap B \cap C).$

Theorem (Inclusion Exclusion Principle). Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$. Then: $\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mathbb{P}(A_{i}) - \sum_{1 \le i_{1} < i_{2} \le n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}}) + \sum_{1 \le i_{1} < i_{2} < i_{3} \le n} \mathbb{P}(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}})$ $-\cdots + (-1)^{n+1} \mathbb{P}(A_1 \cap \cdots \cap A_n)$

Or, abbreviated:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\substack{I \subset \{1, \dots, n\}\\ I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)$$

Start of lecture 4 *Proof.* Use induction $n^{-1} \mapsto n$. For n = 2, check Example Sheet 1, Q4(e). For the inductive step:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \cup A_{n}\right)$$
$$= \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\left(\bigcup_{i=1}^{n-1} A_{i}\right) \cap A_{n}\right)$$

Idea:

$$\begin{pmatrix} \bigcup_{i=1}^{n-1} A_i \end{pmatrix} \cap A_n = \bigcup_{i=1}^{n-1} (A_i \cap A_n)$$
$$\implies \bigcap_{i \in J} (A_i \cap A_n) = \bigcap_{i \in J \cup \{n\}} A_i$$

 $(J \subset \{1, \dots, n-1\}).$ $\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\substack{J \subset \{1, \dots, n-1\}\\ J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}(A_{n}) - \sum_{\substack{J \subset \{1, \dots, n-1\}\\ J \neq \emptyset}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}(A_{n}) + \sum_{\substack{I \subset \{1, \dots, n\}\\ n \in I, |I| \ge 2}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)$ $= \sum_{\substack{I \subset \{1, \dots, n\}\\ I \neq \emptyset}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)$

Where $J \cup \{n\} \mapsto I$, so $-(-1)^{|J|+1} \mapsto (-1)^{|I|}$.

Bonferroni Inequalities

Question: What if you *truncate* Inclusion-Exclusion Principle? Recall: $\mathbb{P}(\cup A_i) \leq \sum \mathbb{P}(A_i)$ (union bound).

• When r is even:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_{1} < \dots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

• When r is odd:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{k=1}^{r} (-1)^{k+1} \sum_{i_{1} < \dots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

Question: When is it good to truncate at for example r = 2? *Proof.* Induction on r and n. For r odd:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(\bigcup_{i=1}^{n-1} A_{i}\right) + \mathbb{P}(A_{n}) - \mathbb{P}\left(\bigcup_{i=1}^{n-1} (A_{i} \cap A_{n})\right)$$

$$\leq \sum_{\substack{J \subset \{1,\dots,n-1\}\\I \le |J| \le r}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right) + \mathbb{P}(A_{n}) - \sum_{\substack{J \subset \{1,\dots,n-1\}\\1 \le |J| \le r-1}} (-1)^{|J|+1} \mathbb{P}\left(\bigcap_{i \in J} A_{i}\right)$$

$$\leq \sum_{\substack{I \subset \{1,\dots,n\}\\1 \le |I| \le r}} (-1)^{|I|+1} \mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)$$

 \boldsymbol{r} even is similar.

Counting with Inclusion-Exclusion Principle

Uniform probability measure on Ω , $|\Omega| < \infty$.

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} \forall A \subseteq \Omega.$$

Then $\forall A_1, \ldots, A_n \subseteq \Omega$.

$$|A_1 \cup \dots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{i_1 < \dots < i_k} |A_{i_1} \cap \dots \cap A_{i_k}|$$

(and similar for Bonferroni Inequalities).

Example 1. Surjections $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$

$$\Omega = \{f : \{1, \dots, n\} \to \{1, \dots, m\}\}$$
all functions

 $A = \{f : \operatorname{Im}(f) = \{1, \dots, m\}\}$ all surjections

 $\forall i \in \{1, \ldots, m\}$. Define

$$B_i = \{ f \in \Omega : i \notin \operatorname{Im}(f) \}.$$

Key observations:

- $A = B_1^c \cap \cdots \cap B_m^c = (B_1 \cup \cdots \cup B_m)^c.$
- $|B_{i_1} \cap \dots \cap B_{i_k}|$ is nice to calculate! In particular, it is

$$|\{f \in \Omega : i_1, \dots, i_k \notin \operatorname{Im}(f)\}| = (m-k)^n$$

Inclusion-Exclusion Principle implies:

$$|B_1 \cup \dots \cup B_m| = \sum_{k=1}^m (-1)^{k+1} \sum_{i_1 < \dots < i_k} |B_{i_1} \cap \dots \cap B_{i_k}|$$
$$= \sum_{k=1}^m (-1)^{k+1} \binom{m}{k} (m-k)^n$$

 $|A| = m^{n} - \text{previous expression}$ $= \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} (m-k)^{n}$

Start of lecture 5

Example 2. Derangements (Permutation with no fixed points)

$$\Omega = \{\text{permutations of } \{1, \dots, n\}\}$$

$$D = \{ \sigma \in \Omega : \sigma(i) \neq i \ \forall \ i = 1, \dots, n \}$$

<u>Question</u>: Is $\mathbb{P}(D) = \frac{|D|}{|\Omega|}$ large or small (when $n \to \infty$)?

$$\forall i \in \{1, \dots, n\} : A_i = \{\sigma \in \Omega : \sigma(i) = i\}.$$

• $D = A_1^c \cap \dots \cap A_n^c = (\bigcup_{i=1}^n A_i)^c.$

•
$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{(n-k)!}{n!}$$

Now Inclusion-Exclusion Principle implies:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{i_{1} < \cdots < i_{k}} \mathbb{P}(A_{i_{1}} \cap \cdots \cap A_{i_{k}})$$
$$= \sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} \frac{(n-k)!}{n!}$$

 So

$$\mathbb{P}(D) = 1 - \mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right)$$
$$= 1 - \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k!}$$
$$= \sum_{k=1}^{n} \frac{(-1)^k}{k!}$$

And as $n \to \infty$,

$$\mathbb{P}(D) \to \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} = e^{-1} \approx 0.37$$

Comments

What if instead we have

$$\Omega' = \{f : \{1, \dots, n\} \to \{1, \dots, n\}\}.$$
$$D = \{f \in \Omega' : f(i) \neq i \ \forall \ i = 1, \dots, n\}.$$

Then

$$\mathbb{P}(D) = \frac{(n-1)^n}{n^n} = \left(1 - \frac{1}{n}\right)^n$$

which also approaches e^{-1} as $n \to \infty$.

- Would be nice to write as a product of probabilities, i.e. $\left(\frac{n-1}{n}\right)^n$, and we will be allowed to do this soon.
- f(i) is a random quantity associated to Ω . (Will be allowed to study f(i) as a random variable.)
- Are allowed to toss a fair coin n times.

$$\Omega = \{H, T\}^n$$

Independence

 $(\Omega, \mathcal{F}, \mathbb{P})$ as before.

Definition. • Events $A, B \in \mathcal{F}$ are *independent* if

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

(denoted $A \perp\!\!\!\perp B$).

• A countable collection of events (A_n) is independent if \forall distinct i_1, \ldots, i_k we have:

$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \prod_{j=1}^{\kappa} \mathbb{P}(A_{i_j}).$$

Note. "Pairwise independence" does not imply independence.

Example. $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}, \mathbb{P}(\{\omega\}) = \frac{1}{4} \forall \omega \in \Omega.$ Now define $A = \text{first coin in } H = \{(H,H),(H,T)\}$ $B = \text{second coin } H = \{(H,H), (T,H)\}$ $C = \text{same outcome} = \{(H, H), (T, T)\}.$

Then we have that

$$\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = \frac{1}{2} \qquad A \cap B = A \cap C = B \cap C = \{(H, H)\}$$
$$\implies \mathbb{P}(A \cap B) = \mathbb{P}(A \cap C) = \mathbb{P}(B \cap C) = \frac{1}{4}$$

so pairwise independent, however

$$\mathbb{P}(A \cap B \cap C) = \frac{1}{4} \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$$

so the events are not independent.

Example(s) of Independence

• Define

$$\Omega' = \{f : \{1, \dots, n\} \to \{1, \dots, n\}\}.$$
$$A_i := \{f \in \Omega' : f(i) = i\}.$$
$$\mathbb{P}(A_i) = \frac{n^{n-1}}{n^n} = \frac{1}{n}$$
$$\mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k}) = \frac{n^{n-k}}{n^n} = \frac{1}{n^k} = \prod_{j=1}^k \mathbb{P}(A_{i_j})$$

.

Here: (A_i) independent events.

• Define

$$\Omega = \{ \sigma : \text{permutation of} \{1, \dots, n\} \}$$
$$A_i = \{ \sigma \in \Omega : \sigma(i) = i \}$$

For $i \neq j$,

$$\mathbb{P}(A_i \cap A_j) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)} \neq \mathbb{P}(A_i)\mathbb{P}(A_j)$$

So here, (A_i) are not independent.

Properties

Claim 1. If A is independent of B, then A is also independent of B^c .

Proof.

$$\mathbb{P}(A \cap B^c) + \mathbb{P}(A) - \mathbb{P}(A \cap B)$$
$$= \mathbb{P}(A) - \mathbb{P}(A)\mathbb{P}(B)$$
$$= \mathbb{P}(A)[1 - \mathbb{P}(B)]$$
$$= \mathbb{P}(A)\mathbb{P}(B^c)$$

Claim 2. A is independent of $B = \Omega$ and of $C = \phi$.

Proof.

$$\mathbb{P}(A \cap \Omega) = \mathbb{P}(A) = \mathbb{P}(A)\mathbb{P}(\Omega)$$

And by claim 1, this implies that $A \perp \emptyset$.

As an exercise, one can further prove that if $\mathbb{P}(B) = 0$ or 1, then A is independent of B.

Conditional Probability

 $(\Omega, \mathcal{F}, \mathbb{P})$ as before.

Consider $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0, A \in \mathcal{F}$.

Definition. The conditional probability of A given B is

$$P(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

"The probability of A if we know B happened". (for example revealing info in succession).

Example. If A, B independent,

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).$$

"Knowing whether B happened doesn't affect the probability of A."

Start of lecture 6

Properties

- $\mathbb{P}(A \mid B) \ge 0$
- $\mathbb{P}(B \mid B) = \mathbb{P}(\Omega \mid B) = 1.$
- (A_n) disjoint events $\in \mathcal{F}$.

Claim.
$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n \mid B\right) = \sum_{n\geq 1}\mathbb{P}(A_n \mid B).$$

Proof.

$$\mathbb{P}\left(\bigcup_{n\geq 1} A_n \mid B\right) = \frac{\mathbb{P}\left(\left(\bigcup_{n\geq 1} A_n\right) \cap B\right)}{\mathbb{P}(B)}$$
$$= \frac{\mathbb{P}\left(\bigcup_{n\geq 1} (A_n \cap B)\right)}{\mathbb{P}(B)}$$
$$= \frac{\sum_{n\geq 1} \mathbb{P}(A_n \cap B)}{\mathbb{P}(B)}$$
$$= \sum_{n\geq 1} \mathbb{P}(A \mid B)$$

 $\mathbb{P}(\bullet \mid B)$ is a function from $\mathcal{F} \to [0, 1]$ that satisfies the rules to be a probability measure Ω . Consider $\Omega' = B$ (especially in finite / countable setting), $\mathcal{F}' = \mathcal{P}(B)$. Then $(\Omega', \mathcal{F}', \mathbb{P}(\bullet \mid B))$ also satisfies the rules to be a probability measure on Ω' .

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B \mid A)$$

 $\mathbb{P}(A_1 \cap A_2 \cap \dots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2 \mid A_1)\mathbb{P}(A_3 \mid A_1 \cap A_2) \cdots \mathbb{P}(A_n \mid A_1 \cap \dots \cap A_{n-1}).$

Example. Uniform permutation $(\sigma(1), \sigma(2), \ldots, \sigma(n)) \in \sum_n$.

Claim.

$$\mathbb{P}(\sigma(k) = i_k \mid \sigma(i) = i, \dots, \sigma(k-1) = i_{k-1}) = \begin{cases} 0 & \text{if } i_k \in \{i_1, \dots, i_{k-1}\} \\ \frac{1}{n-k+1} & \text{if } i_k \notin \{i_1, \dots, i_{k-1}\} \end{cases}$$

Proof.

$$\mathbb{P}(\sigma(k) = i_k \mid \sigma(i) = i, \dots, \sigma(k-1) = i_{k-1}) = \frac{\mathbb{P}(\sigma(i) = i_1, \dots, \sigma(k) = i_k)}{\mathbb{P}(\sigma(i) = i_1, \dots, \sigma(k-1) = i_{k-1})}$$
$$= \frac{0 \text{ or } \frac{(n-k)!}{n!}}{\frac{(n-k+1)!}{n!}}$$
$$= \frac{(n-k)!}{(n-k+1)!}$$
$$= \frac{1}{n-k+1}$$

Law of Total Probability and Bayes' Formula

Definition. $(B_1, B_2, ...) \subset \Omega$ is a *partition* of Ω if:

•
$$\Omega = \bigcup_{n \ge 1} B_n$$

• (B_n) are disjoint

Theorem. (B_n) a finite countable partition of Ω with $B_n \in \mathcal{F}$ and for all $n \mathbb{P}(B_n) > 0$, then for all $A \in \mathcal{F}$:

$$\mathbb{P}(A) = \sum_{n \ge 1} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n)$$

(Sometimes known as "Partition Theorem").

Proof. Note that $\bigcup_{n\geq 1} (A \cap B_n) = A$.

$$\mathbb{P}(A) = \sum_{n \ge 1} \mathbb{P}(A \cap B_n) = \sum_{n \ge 1} \mathbb{P}(A \mid B_n) \mathbb{P}(B_n).$$

Theorem (Bayes' Formula).

$$\mathbb{P}(B_n \mid A) = \frac{\mathbb{P}(A \cap B_n)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \mid B_n)\mathbb{P}(B_n)}{\sum_{m>1}\mathbb{P}(A \mid B_m)\mathbb{P}(B_m)}$$

Rephrasing for n = 2:

$$\mathbb{P}(B \mid A)\mathbb{P}(A) = \mathbb{P}(A \mid B)\mathbb{P}(B) = \mathbb{P}(A \cap B).$$

This allows us for example to calculate $\mathbb{P}(B \mid A)$ given $\mathbb{P}(A)$, $\mathbb{P}(A \mid B)$ and $\mathbb{P}(B)$.

Example 1. Lecture course: $\frac{2}{3}$ probability that it is a weekday, and $\frac{1}{3}$ probability that it is a weekend.

$$\mathbb{P}(\text{forget notes} \mid \text{weekday}) = \frac{1}{8}$$
$$\mathbb{P}(\text{forget notes} \mid \text{weekend}) = \frac{1}{2}.$$

What is $\mathbb{P}(\text{weekend} \mid \text{forget notes})$?

$$B_1 = \{\text{weekend}\}, \quad B_2 = \{\text{weekend}\}, \quad A - \{\text{forget notes}\}.$$

Law of Total Probability:

$$\mathbb{P}(=\frac{2}{3}\times\frac{1}{8}+\frac{1}{3}\times\frac{1}{2}=\frac{1}{12}+\frac{1}{6}=\frac{1}{4}$$

Bayes':

$$\mathbb{P}(B_2 \mid A) = \frac{\frac{1}{3} \times \frac{1}{2}}{\frac{1}{4}} = \frac{2}{3}$$

Example 2. Disease testing: probability p that you are infected, probability 1 - p that you are not.

 $\mathbb{P}(\text{tests positive} \mid \text{infected}) = 1 - \alpha$

 $\mathbb{P}(\text{test positive} \mid \text{not infected}) = \beta$

Ideally both α , β are small (and ideally p is small).

 $\mathbb{P}(\text{infected} \mid \text{test positive}).$

Law of Total Probability:

$$\mathbb{P}(\text{test positive}) = p(1-\alpha) + (1-p)\beta.$$

Bayes':

$$\mathbb{P}(\text{infected} \mid \text{positive}) = \frac{p(1-\alpha)}{p(1-\alpha) + (1-p)\beta}$$

Suppose $p \ll \beta$. Then

$$p(1-\alpha) \ll (1-p)\beta$$

Then

$$\mathbb{P}(\text{infected} \mid \text{positive}) \sim \frac{p(1-\alpha)}{(1-p)\beta}$$

Start of lecture 7

Example 3 (Simpson's Paradox).

$$A = \{\text{change colour}\}, \qquad B = \{\text{blue}\} \qquad B^c = \{\text{green}\}$$
$$C = \{\text{Cambridge}\} \qquad C^c = \{\text{Oxford}\}$$
$$\mathbb{P}(A \mid B \cap C) > \mathbb{P}(A \mid B^c \cap C)$$
$$\mathbb{P}(A \cap B \cap C^c) > \mathbb{P}(A \mid B^c \cap C^c)$$
$$\Longrightarrow \mathbb{P}(A \mid B) > \mathbb{P}(A \mid B^c)$$

20

Law of Total Probability for Conditional Probabilities

Suppose C_1, C_2, \ldots a partition of B.

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$
$$= \frac{\mathbb{P}(A \cap (\bigcup_n C_n))}{\mathbb{P}(B)}$$
$$= \frac{\mathbb{P}(\bigcup_n (A \cap C_n))}{\mathbb{P}(B)}$$
$$= \frac{\sum_n \mathbb{P}(A \cap C_n)}{\mathbb{P}(B)}$$
$$= \frac{\sum_n \mathbb{P}(A \mid C_n)\mathbb{P}(C_n)}{\mathbb{P}(B)}$$
$$= \sum_n \mathbb{P}(A \mid C_N)\frac{\mathbb{P}(B \cap C_n)}{\mathbb{P}(B)}$$
$$= \sum_n \mathbb{P}(A \mid C_n)\frac{\mathbb{P}(C_n)}{\mathbb{P}(B)}$$

Conclusion:

$$\mathbb{P}(A \mid B) = \sum_{n} \mathbb{P}(A \mid C_{n}) \mathbb{P}(C_{n} \mid B)$$

Special case:

- If all $\mathbb{P}(C_n)$ are equal, then all $\mathbb{P}(C_n \mid B)$ are equal too.
- If $\mathbb{P}(A \mid C_n)$ s all equal, then $\mathbb{P}(A \mid B) = \mathbb{P}(A \mid C_n)$ also.

Example. Uniform permutation $(\sigma(1), \ldots, \sigma(52)) \in \sum_{52}$ ("well-shuffled cards"). $\{1, 2, 3, 4\}$ are *aces*. What is $\mathbb{P}(\{\sigma(1), \sigma(2) \text{ both aces}\})$?

$$A = \{\sigma(1), \sigma(2) \text{ aces}\}, \qquad B = \{\sigma(1) \text{ is ace}\} = \{\sigma(1) \le 4\}$$
$$C_1 = \{\sigma(1) = 1\}, \dots, C_4 = \{\sigma(1) = 4\}$$

Note. •
$$\mathbb{P}(A \mid C_i) = \mathbb{P}(\sigma(2) \in \{1, 2, 3, 4\} \mid \sigma(1) = i)$$
 $i \le 4$
 $= \frac{3}{51}$
• $\mathbb{P}(C_1) = \dots = \mathbb{P}(C_4) = \frac{1}{52}$

So conclude:

$$\mathbb{P}(A \mid B) = \frac{3}{51}$$
$$\mathbb{P}(A) = \mathbb{P}(B) \times \mathbb{P}(A \mid B) = \frac{4}{52} \times \frac{3}{51}$$

2 Discrete Random Variables

Motivation: Roll two dice.

$$\Omega = \{1, \dots, 6\}^2 = \{(i, j) : 1 \le i, j \le 6\}$$

Restrict attention to first dice, for example $\{(i, j) : i = 3\}$, or sum of dice values for example $\{(i, j) : i + j = 8\}$, or max of dice, for example $\{(i, j) : i, j \le 4, i \text{ or } j = 4\}$. Goal: "Random real-valued measurements".

Definition. A discrete random variable X on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ such that

- $\{\omega \in \Omega : X(\omega) = x\} \in \mathcal{F}$
- $\operatorname{Im}(X)$ is finite or countable (subset of \mathbb{R})

If Ω finite or countable and $\mathcal{F} = \mathcal{P}(\Omega)$ then both bullet points hold automatically.

Definition. The probability mass function of discrete random variable X is the function $p_X : \mathbb{R} \to [0, 1]$ given by

$$p_X(x) = \mathbb{P}(X = x) \ \forall \ x \in \mathbb{R}$$

Note. • if $x \notin \text{Im}(X)$ then

$$p_X(x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\}) = \mathbb{P}(\emptyset) = 0$$
$$\sum_{x \in \text{Im}(X)} P_X(x) = \sum_{x \in \text{Im}(X)} \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})$$
$$= \mathbb{P}\left(\bigcup_{x \in \text{Im}(x)} \{\omega \in \Omega : X(\omega) = x\}\right)$$
$$= \mathbb{P}(\Omega)$$
$$= 1$$

Example. Event $A \in \mathcal{F}$, define $\mathbb{1}_A : \Omega \to \mathbb{R}$ by

$$\mathbb{1}_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}$$

("Indicator function of A") $\mathbb{1}_A$ is a discrete random variable with $\text{Im} = \{0, 1\}$. Probability mass function:

$$\mathbb{P}_{\mathbb{1}_A}(1) = \mathbb{P}(\mathbb{1}_A = 1) = \mathbb{P}(A)$$
$$\mathbb{P}_{\mathbb{1}_A}(0) = \mathbb{P}(\mathbb{1}_A = 0) = 1 - \mathbb{P}(A)$$
$$\mathbb{P}_{\mathbb{1}_A}(x) = 0 \ \forall x \notin \{0, 1\}.$$

This encodes "did A happen?" as a real number.

Remark. Given a probability mass function p_X , we can always construct a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable defined on it with this probability mass function.

•
$$\Omega = \operatorname{Im}(X)$$
 i.e. $\{x \in \mathbb{R} : p_X(x) > 0\}.$

- $\mathcal{F} = \mathcal{P}(\Omega)$
- $\mathbb{P}(\{x\}) = p_X(x)$ and extend to all $A \in \mathcal{F}$.

Start of lecture 8

Discrete Probability Distributions

 Ω finite.

1. Bernoulli Distribution

("(biased) coin toss"). $X \sim \text{Bern}(p), p \in [0, 1].$ $\text{Im}(x) = \{0, 1\}$ $p_X(1) = \mathbb{P}(X = 1) = p$ $p_X(0) = \mathbb{P}(X = 0) = 1 - p.$

<u>Key example</u>: $\mathbb{1}_A \sim \text{Bern}(p)$ with $p = \mathbb{P}(A)$.

2. Binomial Distribution

 $X \sim \text{Bin}(n, p), n \in \mathbb{Z}^+, p \in [0, 1].$ ('Toss coin n times, count number of heads".)

$$\operatorname{Im}(X) = \{0, 1, \dots, n\}$$
$$p_X(k) = \mathbb{P}(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

check:

$$\sum_{k=0}^{n} p_X(k) = (p + (1-p))^n = 1$$

More than one Random Variable

Motivation: Doll a dice. Outcome $X \in \{1, 2, ..., 6\}$. Events:

$$A = \{1 \text{ or } 2\}, \qquad B = \{1 \text{ or } 2 \text{ or } 3\}, \qquad C = \{1 \text{ or } 3 \text{ or } 5\}.$$
$$\mathbb{1}_A \sim \operatorname{Bern}\left(\frac{1}{3}\right), \qquad \mathbb{1}_B \sim \operatorname{Bern}\left(\frac{1}{2}\right), \qquad \mathbb{1}_C \sim \operatorname{Bern}\left(\frac{1}{2}\right)$$

Note. $\mathbb{1}_A \leq \mathbb{1}_B$ for all outcomes, but $\mathbb{1}_A \leq \mathbb{1}_C$ for outcomes is *false*.

Definition. X_1, \ldots, X_n discrete random variables. Say X_1, \ldots, X_n are *independent* if

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n) \qquad \forall \ x_1, \dots, x_n \in \mathbb{R}$$

(suffices to check $\forall x_i \in \text{Im}(X_i)$).

Example. X_1, \ldots, X_n independent random variables each with the Bernoulli(p) distribution. Study $S_n = X_1 + \cdots + X_n$. Then

$$\mathbb{P}(S_n = k) = \sum_{\substack{X_1 + \dots + X_n = k \\ X_i \in \{0,1\}}} \mathbb{P}(X_1 = x_1, \dots, X_n = x_n)$$

$$= \sum_{\substack{X_1 + \dots + X_n = k \\ X_1 + \dots + X_n = k}} \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n)$$

$$= \sum_{\substack{X_1 + \dots + X_n = k \\ X_1 + \dots + X_n = k}} p^{|\{i:x_i = 1\}|} (1-p)^{|\{i:x_i = 0\}|}$$

$$= \sum_{\substack{X_1 + \dots + X_n = k \\ X_1 + \dots + X_n = k}} p^k (1-p)^{n-k}$$

$$= \binom{n}{k} p^k (1-p)^{n-k}$$

so $S_n \sim \operatorname{Bin}(n,k)$.

Example (Non-example). $(\sigma(1), \sigma(2), \ldots, \sigma(n))$ uniform in \sum_n .

Claim. $\sigma(1)$ and $\sigma(2)$ are *not* independent.

Suffices to find i_1 , i_2 such that

$$\mathbb{P}(\sigma(1) = i, \sigma(2) = i_2) \neq \mathbb{P}(\sigma(1) = i_1)\mathbb{P}(\sigma(2) = i_2)$$

for example

$$\mathbb{P}(\sigma(1) = 1, \sigma(2) = 1) = 0 \neq \frac{1}{n} \times \frac{1}{n} = \mathbb{P}(\sigma(1) = 1)\mathbb{P}(\sigma(2) = 1)$$

Consequence of definition

 X_1, \ldots, X_n independent then $\forall A_1, \ldots, A_n \subset \mathbb{R}$ countable, then

$$\mathbb{P}(X_1 \in A_1, \dots, X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \cdots \mathbb{P}(X_n \in A_n)$$

 $\Omega = \mathbb{N}$

"Ways of choosing a random integer"

3. Geometric distribution

("waiting for success")

 $X \sim \text{Geom}(p), p \in (0, 1].$

("Toss a coin with $\mathbb{P}(\text{heads}) = p$ until a head appears. Count how many trials were needed.")

$$\operatorname{Im}(X) = \{1, 2, \dots\}$$

 $p_X(k) = \mathbb{P}((k-1) \text{ failures, then success on } k\text{-th}) = (1-p)^{k-1}p$

Check:

$$\sum_{k \ge 1} (1-p)^{k-1} p = p \sum_{l \ge 0} (1-p)^l = \frac{p}{1-(1-p)} = 1$$

Note. We could alternatively "count how many failures before a success".

 $Im(Y) = \{0, 1, 2, \dots\}$

$$p_Y(k) = \mathbb{P}(k \text{ failures, then success on } (k+1)\text{-th}) = (1-p)^k p$$

Check:

$$\sum_{k\geq 0} (1-p)^k p = 1$$

4. Poisson Distribution

 $\lambda \in (0,\infty).$

$$\begin{aligned} X &\sim \operatorname{Po}(\lambda) \\ \operatorname{Im}(X) &= \{0, 1, 2, \dots \} \\ \mathbb{P}(X = k) &= e^{-\lambda} \frac{\lambda^k}{k!} \qquad \forall \ k \geq 0 \end{aligned}$$

Note.

$$\sum_{k\geq 0} \mathbb{P}(X=k) = e^{-k} \sum_{k\geq 0} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

<u>Motivation</u>: Consider $X_n \sim Bin\left(n, \frac{\lambda}{n}\right)$. .image

- Probability of an arrival in each interval is p, independently across intervals.
- Total arrivals is X_n .

$$\mathbb{P}(X_n = k) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

Fix k, let $n \to \infty$:

$$\mathbb{P}(X_n = k) = \underbrace{\frac{n!}{n^k(n-k)!}}_{\to 1} \times \frac{\lambda^k}{k!} \times \underbrace{\left(1 - \frac{\lambda}{n}\right)^n}_{\to e^{-\lambda}} \times \underbrace{\left(1 - \frac{1}{n}\right)^{-k}}_{\to 1}$$

 \mathbf{SO}

$$\mathbb{P}(X_n = k) \to e^{-\lambda} \frac{\lambda^k}{k!}$$

Start of lecture 9 "Bin $(n, \frac{\lambda}{n})$ converges to Po (λ) ". (note the "converges" is not very meaningful).

Expectation

 $(\Omega,\mathcal{F},\mathbb{P})$ and X a discrete random variable. For now: X only takes non-negative values. " $X\geq 0$ "

Definition. The expectation of X (or expected value of mean) is $\mathbb{E}[X] = \sum_{x \in \text{Im}(X)} x \mathbb{P}(X = x) = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\})$

"average of values taken by X, weighted by p_X ".

Example 1. X uniform on $\{1, 2, \dots, 6\}$ (i.e. dice) then

$$\mathbb{E}[X] = \frac{1}{6} \times 1 + \frac{1}{6} \times 2 + \dots + \frac{1}{6} \times 6 = 3.5$$

Note. $\mathbb{E}[X] \notin \mathrm{Im}(X)$.

Example 2. $X \sim \text{Binomial}(n, p)$.

$$\mathbb{E}[X] = \sum_{k=0}^{n} k \mathbb{P}(X=k) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

Trick:

$$\begin{split} k\binom{n}{k} &= \frac{k \times n!}{k! \times (n-k)!} \\ &= \frac{n!}{(k-1)!(n-k)!} \\ &= \frac{n \times (n-1)!}{(k-1)! \times (n-k)!} \\ &= n\binom{n-1}{k-1} \\ \mathbb{E}[X] &= n \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k} (1-p)^{n-k} \\ &= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)} \\ &= np \sum_{l=0}^{n-1} \binom{n-1}{l} p^{l} (1-p)^{(n-1)-l} \\ &= np (p+(1-p))^{n-1} \\ &= np \end{split}$$

Note. Would like to say:

$$\mathbb{E}[\operatorname{Bin}(n,p)] = \mathbb{E}[\operatorname{Bern}(p)] + \dots + \mathbb{E}[\operatorname{Bern}(p)]$$

Example 3. $X \sim \text{Poisson}(\lambda)$.

$$\mathbb{E}[X] = \sum_{k \ge 0} k \mathbb{P}(X = k)$$
$$= \sum_{k \ge 0} k \cdot e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= \sum_{k \ge 1} e^{-\lambda} \frac{\lambda^k}{(k-1)!}$$
$$= \lambda \sum_{k \ge 0} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}$$
$$= \lambda \sum_{l \ge 0} e^{-\lambda} \frac{\lambda^l}{l!}$$
$$= \lambda$$

Note. Would like to say

$$\mathbb{E}[\operatorname{Poisson}(\lambda)] \approx \mathbb{E}\left[\operatorname{Bin}\left(n, \frac{\lambda}{n}\right)\right] = \lambda$$

Can't say this: not true in general that

$$\mathbb{P}(X_n = k) \approx \mathbb{P}(\lambda = k) \implies \mathbb{E}[X_n] \approx \mathbb{E}[X]$$

Example 4. $X \sim \text{Geometric}(p)$. Exercise.

Positive and negative: General X (not necessarily $X \ge 0$).

$$\mathbb{E}[X] = \sum_{x \in \mathrm{Im}(X)} x \mathbb{P}(X = x)$$

unless

$$\sum_{\substack{x>0\\x\in \mathrm{Im}(x)}} x\mathbb{P}(X=x) = +\infty$$

and

$$\sum_{\substack{x<0\\x\in \mathrm{Im}(x)}} x\mathbb{P}(X=x) = -\infty$$

then we say that $\mathbb{E}[X]$ is not defined. Summary:

- both infinite: not defined
- first infinite, second not: $\mathbb{E}[X] = +\infty$
- second infinite, first not: $\mathbb{E}[X] = -\infty$
- neither infinite: X is *integrable*, i.e.

$$\sum_{x \in \mathrm{Im}(X)} |x| \mathbb{P}(X = x)$$

converges.

Note that some people say that in cases 2 and 3, the expectation is undefined.

Example 5. Most examples in the course are integrable *except*:

- $\mathbb{P}(X=n) = \frac{6}{\pi^2} \times \frac{1}{n^2}$ for $n \ge 1$. (Note $\sum \mathbb{P}(X=n) = 1$). Then $\mathbb{E}[X] = \sum \frac{6}{\pi^2} \times \frac{1}{n} = +\infty$
- $\mathbb{P}(X = n) = \frac{3}{\pi^2} \times \frac{1}{n^2}$ for $n \in \mathbb{Z} \setminus \{0\}$, then $\mathbb{E}[X]$ is not defined. ("It's symmetric so $\mathbb{E}[X] = 0$ " is considered wrong for us).

Example. $\mathbb{E}[\mathbb{1}_A = \mathbb{P}(A) \text{ Important!}$

Properties of Expectation

(X discrete).

(1) If $X \ge 0$, then $\mathbb{E}[X] \ge 0$ with equality if and only $\mathbb{P}(X = 0) = 1$. Why?

$$\mathbb{E}[X] = \sum_{\substack{x \in \mathrm{Im}(X) \\ x \neq 0}} x \mathbb{P}(X = x)$$

- (2) If $\lambda, c \in \mathbb{R}$ then:
 - (i) $\mathbb{E}[X+c] = \mathbb{E}[X] + c$
 - (ii) $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$
- (3) (i) X, Y random variables (both integrable) on same probability space.

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

(ii) In fact $\lambda, \mu \in \mathbb{R}$

$$\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]$$

similarly:

$$\mathbb{E}[\lambda_1 X_1 + \dots + \lambda_n X_n] = \lambda_1 \mathbb{E}[X_1] + \dots + \lambda_n \mathbb{E}[X_n]$$

Proof of (3)(ii).

$$\begin{split} \mathbb{E}[\lambda X + \mu Y] &= \sum_{\omega \in \Omega} (\lambda X(\omega) + \mu Y(\omega)) \mathbb{P}(\{\omega\}) \\ &= \lambda \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\}) + \mu \sum_{\omega \in \Omega} Y(\omega) \mathbb{P}(\{\omega\}) \\ &= \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y] \end{split}$$

Note that this proof only works for countable Ω , but there is also a proof for general Ω .

Note. Independence is *not* required for linearity of expectation to hold. (This is the name for property (3)(ii)).

Start of lecture 10

Corollary. $X \ge Y$ (meaning $X(\omega) \ge Y(\omega)$ for all $\omega \in \mathbb{R}$) then $\mathbb{E}[X] \ge \mathbb{E}[Y]$.

Proof. X = (X - Y) + Y hence

$$\mathbb{E}[X] = \mathbb{E}[X - Y] + \mathbb{E}[Y]$$

but $X - Y \ge 0$ hence $\mathbb{E}[X - Y] \ge 0$. Key Application: Counting problems. $\overline{(\sigma(1), \ldots, \sigma(n))}$ uniform on σ_n .

 $Z = |\{i : \sigma(i) = i\}|$ = number of fixed points

Let $A_i = \{\sigma(i) = i\}$. (Recall A_i s are *not* independent) **Key step**:

$$Z = \mathbb{1}_{A_1} + \dots + \mathbb{1}_{A_n}$$

 \mathbf{SO}

$$\mathbb{E}[Z] = \mathbb{E}[\mathbb{1}_{A_1} + \dots + \mathbb{1}_{A_n}]$$

= $\mathbb{E}[\mathbb{1}_{A_1}] + \dots + \mathbb{E}[\mathbb{1}_{A_n}]$
= $\mathbb{P}(A_1) + \dots \mathbb{P}(A_n)$
= $\frac{1}{n} \times n$
= 1

Note. Same answer as Bin $(n, \frac{1}{n})$.

Application: X takes values in $\{0, 1, 2, ...\}$. **Fact**: $\mathbb{E}[X] = \sum_{k \ge 1} \mathbb{P}(X \ge k)$. *Proof 1.* Write

$$X = \sum_{k \ge 1} \mathbb{1}_{(X \ge k)}$$

Then

$$\mathbb{E}[X] = \mathbb{E}\left[\sum \mathbb{1}_{(X \ge k)}\right]$$
$$= \sum \mathbb{E}[\mathbb{1}_{(X \ge k)}]$$
$$= \sum \mathbb{P}(X \ge k)$$

Sanity Check: for example if X = 7 then

$$\mathbb{1}_{(X \ge 1)} = \dots = \mathbb{1}_{(X \ge 7)} = 1$$

 $\mathbb{1}_{(X \ge 8)} = \mathbb{1}_{(X \ge 9)} = \dots = 0$

Markov's Inequality

 $X \geq 0$ a random variable. Then $\forall \; a > 0$:

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$$

Comment: Is $a = \frac{\mathbb{E}[X]}{2}$ useful? Definitely not. Is a is large useful? Maybe. *Proof.* Observe: $X \ge a \mathbb{1}_{(X \ge a)}$. Then

$$\mathbb{E}[X] \ge a \mathbb{E}[\mathbb{1}_{X \ge a}] = a \mathbb{P}(X \ge a)$$

now just rearrange.

Note that $\mathbb{1}_{(X \ge a)}$ means $X(\omega) \ge a \mathbb{1}_{(X \ge a)}(\omega)$. Check: if $X \in [0, a)$ then RHS = 0, if $X \in [a, \infty)$ then RHS = a.

Note. Also true for continuous random variables (later).

Studying $\mathbb{E}[f(X)]$

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Then f(X) is also a random variable.

Claim.
$$\mathbb{E}[f(X)] = \sum_{x \in \operatorname{Im}(X)} f(x) \mathbb{P}(X = x).$$

Proof. Let

$$A = \operatorname{Im}(f(X)) = \{y : y = f(x), x \in \operatorname{Im}(X)\} = \{f(x) : x \in \operatorname{Im}(X)\}\$$

Start with RHS:

$$\sum_{x \in \operatorname{Im}(X)} f(x) \mathbb{P}(X = x) = \sum_{y \in A} \sum_{\substack{x \in \operatorname{Im}(X) \\ f(x) = y}} f(x) \mathbb{P}(X = x)$$
$$\sum_{y \in A} y \sum_{\substack{x \in \operatorname{Im}(X) \\ f(x) = y}} \mathbb{P}(X = x)$$
$$= \sum_{y \in A} y \mathbb{P}(f(X) = y)$$
$$= \mathbb{E}[f(X)]$$

Motivation

$$U_n \sim \text{Uniform}(\{-n, -n+1, \dots, n\})$$
$$V_n \sim \text{Univorm}(\{-n, +n\})$$
$$Z_n = 0$$
$$S_n = \text{random walk for } n \text{ steps } \sim n - 2\text{Bin}\left(n, \frac{1}{2}\right)$$

All of these have $\mathbb{E} = 0$.

Variance

"Measure how concentrated a random variable is around its mean".

Definition. The variance of X is:

 $\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$

Property:

$$\operatorname{Var}(X) \ge 0$$

with equality $\iff \mathbb{P}(X = \mathbb{E}[X]) = 1.$

Alternative Characterisation:

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Proof. Write $\mu = \mathbb{E}[X]$. Then

$$Var(X) = \mathbb{E}[(X - \mu)^2]$$

= $\mathbb{E}[X^2 - 2\mu X + \mu^2]$
= $\mathbb{E}[X^2] - 2\mu \underbrace{\mathbb{E}[X]}_{\mu} + \mu^2$
= $\mathbb{E}[X^2] - \mu^2$

Properties

If $\lambda, c \in \mathbb{R}$:

- $\operatorname{Var}(\lambda X) = \lambda^2 \operatorname{Var}(X)$
- $\operatorname{Var}(X+c) = \operatorname{Var}(X).$

Proof. $\mathbb{E}[X+c] = \mu + c$	
	$\operatorname{Var}(X+c) = \mathbb{E}[(X+c-(\mu+c))^2]$
	$= \mathbb{E}[(X - \mu)^2]$
	$= \operatorname{Var}(X)$

Start of lecture 11 **Example 1.** $X \sim \text{Poisson}(\lambda), \mathbb{E}[X] = \lambda.$

$$\operatorname{Var}(x) = \mathbb{E}[X^2] - \lambda^2$$

"Falling factorial trick": sometimes $\mathbb{E}[X(X-1)]$ is easier than $\mathbb{E}[X^2]$. Here:

$$\mathbb{E}[X(X-1)] = \sum_{k\geq 2} k(k-1)e^{-\lambda}\frac{\lambda^k}{k!}$$
$$= \lambda^2 e^{-\lambda} \sum_{k\geq 2} \frac{\lambda^{k-2}}{(k-2)!}$$
$$= \lambda^2$$
$$\mathbb{E}[X^2] = \mathbb{E}[X(X-1) + X]$$
$$= \mathbb{E}[X(X-1)] + \mathbb{E}[X]$$
$$= \lambda^2 + \lambda$$
$$\Longrightarrow \operatorname{Var}(x) = \lambda$$

Example 2. $Y \sim \text{Geom}(p) \in \{1, 2, 3, ...\}$. $\mathbb{E}[Y] = \frac{1}{p}$. $\text{Var}(y) = \cdots = \frac{1-p}{p^2}$. (left as an exercise)

Note. λ large: $\operatorname{Var}(X) = \mathbb{E}[X]$. p small (so Y large): $\operatorname{Var}(Y) \approx \frac{1}{p^2} = (\mathbb{E}[X])^2$.

Example 3. $X \sim \text{Bern}(p)$. $\mathbb{E}[X] = 1 \times p = p$. $\mathbb{E}[X^2] = 1^2 \times p = p$. $\text{Var}(X) = p - p^2 = p(1 - p)$

Example 4. $X \sim Bin(n, p), \mathbb{E}[X] = np.$ $\mathbb{E}[X^2] = ugly...$

Goal: Study $Var(X_1 + \cdots + X_n)$ for not independent.

Preliminary: \mathbb{E} [Products of RVs]. Setting: X, Y independent random variables and f,

f functions $\mathbb{R} \to \mathbb{R}$. Then:

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$$

"splits as a product"

 $\begin{array}{l} \displaystyle \underbrace{ \text{Key example 1:}}_{\text{Key example 2:}} f,g:f(x)=g(x)=x. \text{ Then } \mathbb{E}[XY]=\mathbb{E}[X]\mathbb{E}[Y]. \\ \displaystyle \underbrace{ \text{Key example 2:}}_{Proof.} f(x)=g(x)=z^x \text{ (or } e^{tx}). \end{array} \end{array}$

$$LHS = \sum_{x,y \in \text{Im}} f(x)g(y)\mathbb{P}(X = x, Y = y)$$

=
$$\sum_{x,y \in \text{Im}} f(x)g(y)\mathbb{P}(X = x)\mathbb{P}(Y = y)$$

=
$$\left[\sum_{x \in \text{Im} \ X} f(x)\mathbb{P}(X = x)\right] \left[\sum_{y \in \text{Im} \ Y} g(y)\mathbb{P}(Y = y)\right]$$

=
$$\mathbb{E}[f(X)]\mathbb{E}[g(Y)]$$

Sums of Independent Random Variables

 X_1, \ldots, X_n independent. Then

$$\operatorname{Var}(X_1 + \cdots + X_n) = \operatorname{Var}(X_1) + \cdots \operatorname{Var}(X_n)$$

Proof. (Suffices to prove n = 2 by induction). Say $\mathbb{E}[X] = \mu$, $\mathbb{E}[Y] = \nu$. Then $\mathbb{E}[X+Y] = \mu + \nu$.

$$Var(X+Y) = \mathbb{E}[(X+Y-\mu-\nu)^2]$$

= $\mathbb{E}[(X-\mu)^2] + \mathbb{E}[(Y-\mu)^2] + 2\mathbb{E}[(X-\mu)(Y-\nu)]$
= $Var(X) + Var(Y) + \mathbb{E}[X-\mu]\mathbb{E}[Y-\nu]$
 $Var(X) + Var(Y)$

Example 4. Var(Bin(n, p)) = np(1 - p).

Goal: Study Var(X + Y) when X, Y are not independent.

Definition. X, Y two random variables. Their *covariance* is

 $Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$

"Measures how dependent X, Y are, and in which direction": If Cov > 0 then X bigger means Y bigger, and if Cov < 0 then X bigger means Y smaller.

Properties

- $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(X, X) = \operatorname{Var}(X).$
- Alternative characterisation:

$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

(often more useful, and particularly nice if $\mathbb{E}[X] = 0$) *Proof.*

$$\operatorname{Cov}(X,Y) = \mathbb{E}[(X-\mu)(Y-\nu)]$$
$$\mathbb{E}[XY] - \mu \underbrace{\mathbb{E}[Y]}_{\nu} - \nu \underbrace{\mathbb{E}[X]}_{\mu} + \mu\nu$$
$$= \mathbb{E}[XY] - \mu\nu$$

- $c, \lambda \in \mathbb{R}$:
 - $-\operatorname{Cov}(c,X)=0$
 - $-\operatorname{Cov}(X+c,Y) = \operatorname{Cov}(X,Y)$
 - $-\operatorname{Cov}(\lambda X, \lambda Y) = \lambda^2 \operatorname{Cov}(X, Y)$
- $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$
- Covariance is *linear* in each argument, i.e.

$$\operatorname{Cov}\left(\sum \lambda_i X_i, Y\right) = \sum \lambda_i \operatorname{Cov}(X_i, Y)$$

and (applying in two stages)

$$\operatorname{Cov}\left(\sum \lambda_i X_i, \sum \mu_j Y_j\right) = \sum_{i=1}^n \sum_{j=1}^n \lambda_i \mu_j \operatorname{Cov}(X_i, Y_j)$$

"Special case":

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}\right)$$
$$= \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{Cov}(X_{i}, X_{j})$$

(for an example, see Q11 on sheet 3)

Note. We have already seen that X, Y independent implies Cov(X, Y) = 0, but it is not the case the zero covariance implies independence.

Start of lecture 12

Example 0. $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$ for independent X, Y. Consider Y = -X. Then

$$Var(Y) = Var(-X) = (-1)^2 Var(X) = Var(X)$$
$$0 = Var(0) = Var(X + Y) \neq Var(X) + Var(Y) = 2Var(X)$$

Example 1. $(\sigma(1), \ldots, \sigma(n))$ uniform on $\sum_{n} A_i = \{\sigma(i) = i\}$.

 $N = \mathbb{1}_{A_1} + \dots + \mathbb{1}_{A_n}$ = number of fixed points

Already seen: $\mathbb{E}[N] = n \times \frac{1}{n} = 1$. Goal: Var(N).

Note. A_i and A_j are *not* independent.

$$\begin{aligned} \operatorname{Var}(\mathbb{1}_{A_i}) &= \frac{1}{n} \left(1 - \frac{1}{n} \right) \\ \operatorname{Cov}(\mathbb{1}_{A_i}, \mathbb{1}_{A_j}) &= \mathbb{E}[\mathbb{1}_{A_i} \mathbb{1}_{A_j}] - \mathbb{E}[\mathbb{1}_{A_i}] \mathbb{E}[\mathbb{1}_{A_j}] \\ &= \mathbb{E}[\mathbb{1}_{A_i \cap A_j}] - \mathbb{E}[\mathbb{1}_{A_i}] \mathbb{E}[\mathbb{1}_{A_j}] \\ &= \mathbb{P}(A_i \cap A_j) - \mathbb{P}(A_i) \mathbb{P}(A_j) \\ &= \frac{1}{n(n-1)} - \frac{1}{n} \times \frac{1}{n} \\ &= \frac{1}{n^2(n-1)} \\ &> 0 \end{aligned}$$
$$\implies \operatorname{Var}(N) &= \sum_{i=1}^n \operatorname{Var}(\mathbb{1}_{A_i}) + \sum_{i \neq j} \operatorname{Cov}(\mathbb{1}_{A_i}, \mathbb{1}_{A_j}) \\ &= n \times \frac{1}{n} \left(1 - \frac{1}{n} \right) + n(n-1) \times \frac{1}{n^2(n-1)} \\ &= 1 - \frac{1}{n} + \frac{1}{n} \\ &= 1 \end{aligned}$$

Compare with $Bin\left(n,\frac{1}{n}\right)$:

$$\mathbb{E} = 1,$$
 $\operatorname{Var} = n \times \frac{1}{n} \left(1 - \frac{1}{n} \right) = 1 - \frac{1}{n}$

Chebyshev's Inequality

Theorem (Chebyshev's Inequality). X a random variable, $\mathbb{E}[X] = \mu$, $\operatorname{Var}(X) = \sigma^2 < \infty$. Then: $\mathbb{P}(|X - \mu| \ge \lambda) \le \frac{\operatorname{Var}(X)}{\lambda^2}$

Comment: Remember the proof, not the statement!

Proof. Idea: Apply Markov's Inequality to

$$(X-\mu)^2$$

(which is non-negative as required). Then:

$$\mathbb{P}(|X - \mu| \ge \lambda) = \mathbb{P}((X - \mu)^2 \ge \lambda^2)$$
$$\leq \frac{\mathbb{E}[(X - \mu)^2]}{\lambda^2}$$
$$= \frac{\operatorname{Var}(X)}{\lambda^2}$$

Comments

- Chebyshev's Inequality gives better bounds than Markov's inequality.
- Note can apply to all Random Variables, not just ≥ 0 .
- However, $\operatorname{Var}(X) < \infty$ is a stronger condition than $\mathbb{E}[X] < \infty$.

Definition. • Quantity $\sqrt{\operatorname{Var}(X)} = \sigma$ is called the *standard deviation* of X.

- Same "units" as X. (Scales linearly)
- (Not many nice properties).
- Rewriting Chebyshev; use $\lambda = k\sqrt{\sigma^2}$, then

$$\mathbb{P}(|X - \mu| \ge \sigma) \le \frac{1}{k^2}$$

• Nice uniform statement

Conditional Expectation

Setting: $(\Omega, \mathcal{F}, \mathbb{P})$. Recall: $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$ we defined

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Definition. $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, X a random variable. The conditional expectation is

$$\mathbb{E}[X \mid B] = \frac{\mathbb{E}[X \, \mathbb{I}_B]}{\mathbb{P}(B)}$$

Example. X dice, uniform on $\{1, \ldots, 6\}$.

$$\mathbb{E}[X \mid X \text{ prime}] = \frac{\frac{1}{6}[0+2+3+0+5+0]}{\frac{1}{2}}$$
$$= \frac{1}{3}(2+3+5)$$
$$= \frac{10}{3}$$

Alternative Characterisation:

$$\mathbb{E}[X \mid B] = \sum_{x \in \operatorname{Im} X} \mathbb{P}(X = x \mid B)$$

Proof.

$$RHS = \sum \frac{x\mathbb{P}(\{X = x\} \cap B)}{\mathbb{P}(B)}$$
$$= \sum_{\substack{x \neq 0 \\ x \in \operatorname{Im} X}} \frac{x\mathbb{P}(X\mathbb{1}_B = x)}{\mathbb{P}(B)}$$

and note

$$\mathbb{E}[X\mathbb{1}_B] = \sum_{\substack{x \neq 0 \\ x \in \operatorname{Im} X}} x \mathbb{P}(X\mathbb{1}_B = x)$$

Law of Total Expectation

 $(B_1, B_2, ...)$ a finite or countably infinite partition of Ω with $B_n \in \mathcal{F}$ for all n such that $\mathbb{P}(B_n) > 0$. X is a random variable. Then:

$$\mathbb{E}[X] = \sum_{n} \mathbb{E}[X \mid B_{n}]\mathbb{P}(B_{n})$$

For example, $X = \mathbb{1}_A$ recovers the law of total probability. *Proof.*

$$RHS = \sum_{n} \mathbb{E}[X \mathbb{1}_{B_{n}}]$$
$$= \mathbb{E}[X \cdot (\mathbb{1}_{B_{1}} + \dots + \mathbb{1}_{B_{n}})]$$
$$= \mathbb{E}[X \cdot 1]$$
$$= \mathbb{E}[X]$$

Application: Two stage randomness where (B_n) describes what happens in stage 1. <u>Application 1</u>: "random sums" (random number of terms). $(\overline{X_n})_{n\geq 1}$ independent and identically distributed random variables. $N \in \{0, 1, 2, ...\}$ random index independent of (X_n) .

$$S_n = X_1 + \dots + X_n$$

with $\mathbb{E}[X_n] = \mu$ so $\mathbb{E}[S_n] = n\mu$. Then

$$\mathbb{E}[S_N] = \sum_{n \ge 0} \mathbb{E}[S_N \mid N = n] \mathbb{P}(N = n)$$
$$= \sum_{n \ge 0} \mathbb{E}[S_n] \mathbb{P}(N = n)$$
$$= \sum_{n \ge 0} n \mu \mathbb{P}(N = n)$$
$$= \mu \mathbb{E}[N]$$

Start of lecture 13

Random Walks

<u>Setting</u>: $(X_n)_{n\geq 1}$ independent and identically distributed random variables

$$S_n = x_0 + X_1 + \dots + X_n$$

 (S_0, S_1, S_2, \dots) is a random process called *Random Walk* started from x_0 .

Main example in our course:

Simple Random Walk (SRW) on \mathbb{Z} .

$$\mathbb{P}(X_i = +1) = p$$
 $\mathbb{P}(X_i = -1) = q = 1 - p$

 $x_0 \in \mathbb{Z}$ (often $x_0 = 0$). Special case: $p = q = \frac{1}{2}$. ("symmetric"):

For example, $\mathbb{P}(S_2 = x_0) = pq + qp = 2pq$.

Useful interpretation: A gambler repeatedly plays a game where he wins $\pounds 1$ with $\mathbb{P} = p$ and losses $\pounds 1$ with $\mathbb{P} = q$.

Often we stop if we ever reach $\pounds 0$.

Question: Suppose we start with $\pounds x$ at time 0. What is the probability he reaches $\pounds a$ before $\pounds 0$?

Notation.

$$\mathbb{P}_X(\bullet)^{"} = \mathbb{P}(\bullet \mid x_0 = x)$$

"measure of RW started from x_0 ".

Key Idea: Conditional on $S_1 = z$, $(S_1, S_2, ...)$ is a random walk started from z. Now we apply the Law of Total Probability:

$$\mathbb{P}_X(S \text{ hits } a \text{ before } 0 = \sum_{z} \mathbb{P}_X(S \text{ hits } a \text{ before } 0 \mid S_1 = z) \mathbb{P}_X(S_1 = z)$$
$$= \sum_{z} \mathbb{P}_Z(S \text{ hits } a \text{ before } 0) \mathbb{P}_Z(S_1 = z)$$

so $h_X = \mathbb{P}_X(S \text{ hit } a \text{ before } 0)$. $S_1 = x \pm 1$.

$$h_X = px_{x+1} + qh_{x-1}$$

Important to specify boundary conditions:

$$h_0 = 0, \qquad h_a = 1.$$

Now we apply law of total expected value. Expected absorption time:

$$T = \min\{n \ge 0 : S_n = 0 \text{ or } S_n = a\}$$

"first time S hits $\{0, a\}$ ". Want: $\mathbb{E}_x[T] = \tau_x$.

$$\tau_x = \mathbb{E}_x[T] = p\mathbb{E}_x[T \mid S_1 = x + 1] + q\mathbb{E}_x[T \mid S_1 = x - 1]$$

= $p\mathbb{E}_{x+1}[T + 1] + q\mathbb{E}_{x-1}[T + 1]$
= $p(1 + \mathbb{E}_{x+1}[T]) + q(1 + \mathbb{E}_{x-1}[T])$
= $1 + p\tau_{x+1} + q\tau_{x-1}$

Boundary conditions:

$$\tau_0 = \tau_a = 0$$

"we're already there"

Solving Linear Recurrence Equations

Homogeneous case (boundary conditions: h_0, h_a):

$$ph_{x+1} - h_x + qh_{x-1} = 0$$

- Analagous to DEs
- Solutions form a vector space.

<u>Plan</u>: (homogeneous case):

• Find two solutions (linearly independent)

Guess $h_x = \lambda^x$, so

$$p\lambda^{x+1} - \lambda^x + q\lambda^{x-1} = 0$$
$$p\lambda^2 - \lambda + q = 0$$

Quadratic in $\lambda \implies \lambda = 1$ or $\frac{p}{q}$. <u>Case $q \neq p$ </u>: $h_x = A + B\left(\frac{q}{p}\right)^x$.

• Use boundary conditions to find A, B: i.e.

$$x = 0: h_0 = 0 = A + B$$
$$x = a: h_a = 1 = A + B \left(\frac{q}{p}\right)^a$$
$$h_x = \frac{\left(\frac{q}{p}\right)^x - 1}{\left(\frac{q}{p}\right)^a - 1}$$

Case $p = q = \frac{1}{2}$: (symmetric random walk)

• Note $h_x = x$ "x is the average of x + 1 and x - 1".

General solution: $h_x = A + Bx$. Boundary conditions:

$$h_0 = 0 = A$$
$$h_a = 1 = A + Ba$$

so $A = 0, B = \frac{1}{a}$. Hence

$$h_x = \frac{x}{a}$$

Probability sanity check: $p = q = \frac{1}{2}$. Study Expected profit if you start from $\pounds x$ and play until time T.

$$\mathbb{E}_x[S_T] = a\mathbb{P}_x(S_T = a) + 0 \times \mathbb{P}_x(S_T = 0) = a \cdot \frac{x}{a} = x$$

fits intuition for fair games.

Inhomogeneous Case

$$ph_{x+1} - h_x + qh_{x-1} = f(x) = -1$$

Plan:

- Find a *particular solution* Guess: "one level more complicated than general solution".
- Add on general solution
- Solve for boundary conditions

For $p \neq q$: Guess $h_x = \frac{x}{q-p}$ works as a particular solution. For $p = q = \frac{1}{2}$: Guess $h_x = Cx^2$ might work. Sub in:

$$\frac{C}{2}(x+1)^2 - Cx^2 + \frac{C}{2}(x-1)^2 = -1 \implies C = -1$$

 So

$$h_x = A + Bx - x^2$$

then find A, B with boundary conditions: roots are 0 and a, so

$$h_x = x(a - x)$$

Start of lecture 14

Unbounded Random Walk: "Gambler's Ruin"

$$\mathbb{P}_x(\text{hit } 0) = \lim_{a \to \infty} (\text{hit } 0 \text{ before } a)$$
$$= \begin{cases} 1 - \left(\frac{q}{p}\right)^x & p > q\\ 1 & p < q\\ 1 & p = q = \frac{1}{2} \end{cases}$$

 $p = \frac{1}{2} : \mathbb{E}_x[\text{time to hit } 0] \ge \mathbb{E}_x[\text{time to hit } 0 \text{ or } a] = x(a - x)$ which $\to \infty$ as $a \to \infty$.

Key conclusion: T_x (time to hit 0 from x) is for $p = \frac{1}{2}$:

- finite with probability = 1
- $\bullet\,$ infinite expectation

Generating Functions

Setting: X is a random variable taking values in $\{0, 1, 2, ...\}$.

Definition. The Probability Generating Function of X is $G_X(z) = \mathbb{E}[z^X] = \sum_{k \ge 0} z^k \mathbb{P}(X = k).$ Analytic comment: $G_X : (-1, 1) \stackrel{k \ge 0}{\rightarrow} \mathbb{R}.$

Idea: "To encode the distribution of X as a function with nice analytic properties".

Example 1. $X \sim \text{Bern}(p)$ $G_X(z) = z^0 \mathbb{P}(X = 0) + z^1 \mathbb{P}(X = 1) = (1 - p) + pz$

Example. $X \sim Bin(n, p)$ we will save for later.

Example 2. $X \sim \text{Poisson}(\lambda)$

$$G_X(z) = \sum_{k \ge 0} z^k e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \sum_{k \ge 0} \frac{(\lambda z)^k}{k!}$$
$$= e^{-\lambda} e^{\lambda z}$$
$$= e^{\lambda (z-1)}$$

Recovering PMF (mass function) from PGF

Note. $G_X(0) = 0^0 \mathbb{P}(X = 0) = \mathbb{P}(X = 0).$

<u>Idea</u>: Differentiate n times.

$$\frac{\mathrm{d}^n}{\mathrm{d}z^n} G_X(z) = \sum_{k \ge 0} \frac{\mathrm{d}^n}{\mathrm{d}z^n} (z^k) \mathbb{P}(X=k)$$
$$= \sum_{k \ge 0} k(k-1) \cdots (k-n+1) z^{k-n} \mathbb{P}(X=k)$$
$$= \sum_{k \ge n} k(k-1) \cdots (k-n+1) z^{k-n} \mathbb{P}(X=k)$$
$$= \sum_{l \ge 0} (l+1)(l+2) \cdots (l+n) z^l \mathbb{P}(X=l+n)$$

Evaluate at 0:

$$\frac{\mathrm{d}^n}{\mathrm{d}z^n}G_X(0) = n!\mathbb{P}(X=n).$$
$$\mathbb{P}(X=n) = \frac{1}{n!}G_X^{(n)}(0)$$

Key fact: PGF determines PMF / distribution exactly.

Recovering other probabilistic quantities

Note. $G_X(1) = \sum_{k \ge 0} \mathbb{P}(X = k) = 1.$

<u>Technical comment</u>: $G_X(1)$ means $\lim_{z\to 1} G_X(z)$ if the domain is (-1,1) (the limit is from below).

• What about $G'_X(1)$?

$$G'_X(z) = \sum_{k \ge 1} k z^{k-1} \mathbb{P}(X = k)$$
$$G'_X(1) = \sum_{k \ge 1} k \mathbb{P}(X = k) = \mathbb{E}[X]$$

• What about $G_X^{(n)}(1)$?

$$G_X^{(n)}(1) = \sum_{k \ge n} k(k-1) \cdots (k-n+1) \mathbb{P}(X=k)$$

= $\mathbb{E}[X(x-1) \cdots (X-n+1)]$

• Other expectations:

$$\mathbb{E}[X^2] = \mathbb{E}[X(X-1)] + \mathbb{E}[X]$$
$$= G''_X(1) + G'_X(1)$$

$$Var(X) = G''_X(1) + G'_X(1) - [G'_X(1)]^2$$

Idea: Find in general $\mathbb{E}[P(X)]$ using $\mathbb{E}[$ falling factorials of X.

Note (Linear Algebra Aside). The falling factorials

$$1, X, X(X-1), X(X-1)(X-2)$$

form a *basis* for $\mathbb{R}[X]$ (the set of polynomials with real coefficients).

PGFs for sums of Independent Random Variables

 X_1, \ldots, X_n independent random variables. G_{X_1}, \ldots, G_{X_n} are the PGFs. Let $X = X_1 + \cdots + X_n$. Question: What's the PGF of X? (Is it nice)?

$$G_X(z) = \mathbb{E}[Z^X]$$

= $\mathbb{E}[z^{X_1 + \dots + X_n}]$
= $\mathbb{E}[z^{X_1} z^{X_2} \cdots z^{X_n}]$
= $\mathbb{E}[z^{X_1}] \cdots \mathbb{E}[z^{X_n}]$
= $G_{X_1}(z) \cdots G_{X_n}(z)$

Special case: $X_i = X_1 \rightarrow G_X(z) = (G_{X_1}(z))^n$.

Note.

$$\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$$

for independent random variables X, Y.

Start of lecture 15

Note. PGF is much nicer than PMF of X!

Example. $X \sim Bin(n, p)$

$$X = X_1 + \cdots + X_n$$

(Identical independently distributed Bern(p))

$$G_X(z) = (1 - p + pz)^n$$

Example. $X \sim \operatorname{Poi}(\lambda), Y \sim \operatorname{Poi}(\mu)$ independent. $G_X(z) = e^{\lambda(z-1)}, \qquad G_Y(z) = e^{\mu(z-1)}$ We will study Z = X + Y. $G_{X+Y}(z) = G_X(y)G_Y(z)$ $= e^{\lambda(z-1)}e^{\mu(z-1)}$ $= e^{(\lambda+\mu)(z-1)}$ $= \operatorname{PGF} \operatorname{of} \operatorname{Poi}(\lambda + \mu)$ So $X + Y \sim \operatorname{Poisson}(\lambda + \mu)$.

PGF for Random Sums

Setting: X_1, X_2, \ldots IID with same distribution as X. X takes values in $\{0, 1, 2, \ldots\}$ and N is a random value taking values in $\{0, 1, 2, \ldots\}$ independent of (X_n) .

Remark. Perfect pairing with PGFs.

$$\mathbb{E}[z^{X_1+\dots+X_n}] = \sum_{n\geq 0} \mathbb{E}[z^{X_1+\dots+X_N} \mid N=n]\mathbb{P}(N=n)$$
$$= \sum_{n\geq 0} \mathbb{E}[z^{X_1+\dots+X_n} \mid N=n]\mathbb{P}(N=n)$$
$$= \sum_{n\geq 0} \mathbb{E}[z^{X_1+\dots+X_n}]\mathbb{P}(N=n)$$
$$= \sum_{n\geq 0} \mathbb{E}[z^{X_1}]\cdots\mathbb{E}[z^{X_n}]\mathbb{P}(N=n)$$
$$= \sum_{n\geq 0} (G_X(z))^n \mathbb{P}(N=n)$$
$$= G_N(G_X(z))$$

Example. $X_i \sim \text{Bern}(p), N \sim \text{Poisson}(\lambda).$ $G_{X_i}(z) = (1-p) + pz$ $G_N(s) = e^{\lambda(s-1)}$ Interpretation: "Poisson thinning", for example "Poi (λ) misprints, each gets found with $\mathbb{P} = 1 - p$." (see Q7 on Example sheet) $Y = X_1 + \dots + X_N$

$$F = X_1 + \dots + X_N$$
$$G_Y(z) = G_N(G_{X_i}(z))$$
$$= e^{\lambda[1-p+pz-1]}$$
$$= e^{\lambda p(z-1)}$$
$$= PGF \text{ of } Poi(\lambda p)$$

In general: PMF of $X_1 + \cdots + X_n$ is horrible, $G_N(G_X(z))$ is nice.

Branching Process

"Modelling growth of a population". History:

- Bienaymé (1840s)
- Galton-Watson (1870s)

Setting: Random branching tree. Let X be a random variable on $\{0, 1, 2, ...\}$.

- One individual at generation 0
- has a random number of children, with distribution X. If 0, end. Each child independently has some children, each with distribution X.
- Continue.

 $\underline{\text{Goal}}$:

- Study number of individuals in each generation
- Total population size: is it *finite* of *infinite*.

<u>Reduction</u>: Write Z_n = number of individuals in generation n.

$$Z_0 = 1, \qquad Z_1 \sim X, \qquad Z_{n+1} = Z_1^{(n)} + \dots + X_{Z_n}^{(n)}$$

" $X_k^{(n)} =$ number of children of k-th individual in generation n".

Note. If $Z_n = 0$ then $Z_{n+1} = Z_{n+2} = \cdots = 0$.

<u>Key Observation</u>: Z_{n+1} is a random sum,

$$\mathbb{E}[Z_{n+1}] = \mathbb{E}[X]\mathbb{E}[Z_n]$$

Induction:

$$\mathbb{E}[Z_n] = (\mathbb{E}[X])^n$$

Notation:

$$\mu = \mathbb{E}[X] \implies \mathbb{E}[Z_n] = \mu^n.$$

Using PGFs: Let G be the PGF of X, G_n the PGF of Z_n . Random sums:

$$G_{n+1}(z) = G_n(G(z))$$

Induct:

$$G_n(z) = \underbrace{G(\cdots G(z) \cdots)}_{n \ Gs}$$

Key event of interest:

$$\{Z_n = 0\}, \qquad q_n = \mathbb{P}(Z_n = 0)$$

"extinct by generation n".

Definition (Extinction Probability).

$$q = \mathbb{P}(Z_n = 0 \text{ for } n \ge 1)$$

(which is the probability that the population size is finite)

Note. $\{Z_n = 0\} \subseteq \{Z_{n+1} =\}$. Why? Because $Z_n = 0 \implies Z_{n+1} = 0$, and $\{Z_n \text{ for some } n \ge 1\} = \bigcup_{n \ge 1} \{Z_n = 0\}$ So continuity gives

$$\mathbb{P}(Z_n=0)\uparrow\mathbb{P}\left(\bigcup_{n\geq 1}\{Z_n=0\}\right)$$

 \mathbf{SO}

 $q_n \uparrow q$

as $n \to \infty$.

<u>Classification</u>:

- $\mu < 1$ subcritical
- $\mu = 1$ critical
- $\mu > 1$ supercritical

Degenerate case: $\mathbb{P}(X = 1) = 1$. Boring \rightarrow exercise.

Theorem. Assume $\mathbb{P}(X = 1) \neq 1$. Then q = 1 (i.e. "always finite / dies out") if and only if $\mu = \mathbb{E}[X] \leq 1$.

Remark. Interesting that depends on X only through \mathbb{E} .

Start ofInterpretation: "Finite" eg 100 out of a large population, "Infinite" \rightarrow affects positivelecture 16proportion of population.Proof (baby proof). (subcritical) $\mu < 1$

$$\mathbb{P}(Z_n \ge 1) \le \frac{\mathbb{E}[Z_n]}{1} = \mu^n \to 0$$

(Markov's Inequality) (supercritical):

Note. $\mathbb{E}[Z_n] \to \infty$ does not imply $\mathbb{P}(Z_n = 0) \not\approx 1$.

Reminder: G the PGF of X, G_n the PGF of Z_n . We care about $\{Z_n = 0\}, q_n = \mathbb{P}(Z_n = 0)$. Also $q_n = G_n(0)$.

Claim. q the extinction probability, then G(q) = q.

Proof 1. G continuous. Note $q_{n+1} = G(q_n)$ and $q_{n+1} \to q$, and $G(q_n) \to G(q)$ so q = G(q).

Proof 2. LTP (revision of random sums)

Total finite \iff ALl subtrees of 1st generation are finite

$$q = \mathbb{P}(\text{finite})$$
$$= \sum_{k \ge 0} \mathbb{P}(\text{all finite} \mid Z_1 = l) \mathbb{P}(Z_1 = k)$$
$$= \sum_{k \ge 0} [\mathbb{P}(\text{finite})]^k \mathbb{P}(Z_1 = k)$$
$$= \sum_{k \ge 0} q^k \mathbb{P}(Z_1 = k)$$
$$= G(q)$$

Facts about G:

- $G(0) = \mathbb{P}(X = 0) \ge 0$
- G(1) = 1
- $G'(1) = \mathbb{E}[X] = \mu$
- G is smooth, all derivatives ≥ 0 on [0, 1).

Remark. ● Exactly one solution on [0, 1)
● By IVT / Rolle on G(z) - z.

Theorem. Assume $\mathbb{P}(X = 1) \neq 1$. Then q is the *minimal* solution to z = G(z) in [0, 1].

Corollary. $q = 1 \iff \mu \le 1$.

Proof. Let t be the minimal solution. Reminder: G is increasing,

$$t \ge 0$$

$$\implies G(t) \ge G(0)$$

$$\implies G(G(t)) \ge G(G(0))$$

$$\implies G_n(t) \ge G_n(0)$$

$$\implies t \ge q_n$$

$$\implies t \ge q$$

Note q is a solution, so we must have q = t.

Continuous Probability

Focus now: Case where Im(X) is an *interval* in \mathbb{R} . Why?

- Natural for measuring, for example physical quantity, for example proportions
- "Limits" of discrete random variable
- Calculus tools for nice calculations

Redefinition:

Definition. A random variable X on $(\omega, \mathcal{F}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ such that $\{X \leq x\} \in \mathcal{F}$.

Check: consistent with previous definition when Ω countable (or Im(X) is countable).

Drawback: Can't take $\mathcal{F} = \mathcal{P}(\mathbb{R})$.

Definition. The cumulative distribution function (CDF) of RV X is $F_X : \mathbb{R} \to [0, 1]$

 $F_X(x) = \mathbb{P}(X \le x)$

Examples

X a dive on $\{1, ..., 6\}$.

Angle of ludo spinner:

Properties of CDF

- F_X increasing, i.e. $x \leq y \implies F_X(x) \leq F_X(y)$. Why? $F_X(x) = \mathbb{P}(X \leq x) \leq \mathbb{P}(X \leq y) = F_X(y)$.
- $\mathbb{P}(X > x) = 1 F_X(x)$
- $\mathbb{P}(a < x \le b) = F_X(b) F_X(a)$. Why? $\mathbb{P}(a < X \le b) = \mathbb{P}(X \le b) \mathbb{P}(X \le a)$.
- F_X is right-continuous and left limits exist, i.e.

$$\lim_{y \downarrow x} F_X(y) = F_X(x)$$

and

Proof.

$$\lim_{y \uparrow x} F_X(y) = F_X(x^-) = \mathbb{P}(X < x)$$

•
$$\lim_{x\to\infty} F_X(x) = 1$$
, $\lim_{x\to-\infty} F_X(x) = 0$.

Start of lecture 17

• (right-continuous) Sufficient to prove

$$F_X\left(x+\frac{1}{n}\right) \to F_X(x)$$

as $n \to \infty$.

$$A_n = \left\{ x < X \le x + \frac{1}{n} \right\}$$

decreasing events, with

$$\bigcap_{n\geq 1} A_n = \emptyset$$

 \mathbf{SO}

$$\mathbb{P}(A_n) = F_X\left(x + \frac{1}{n}\right) - F_X(x) \to 0$$

• (left-limits) $F_X\left(x-\frac{1}{n}\right)$ is a sequence *increasing* bounded above by $F_X(x)$. $\left\{X_n \leq x-\frac{1}{n}\right\}$ is a *increasing* sequence of events with

$$\bigcup_{n \ge 1} \left\{ X \le x - \frac{1}{n} \right\} = \{ X < x \}$$

 \mathbf{SO}

$$F_X\left(x - \frac{1}{n}\right) = \mathbb{P}\left(X \le x - \frac{1}{n}\right) \to \mathbb{P}(X < x)$$

• $(\lim_{x\to\infty} F_X(x) = 1) \{X \le n\}$ increasing events,

$$\bigcup_{n \ge 1} \{X \le n\} = \Omega$$

 \mathbf{SO}

$$F_X(n) = \mathbb{P}(X \le n) \to \mathbb{P}(\Omega) = 1$$

• Similar for $\lim_{x\to-\infty} F_X(x) = 0$.

Intuitive Meaning:

$$\mathbb{P}(x < X \le x + \delta x) = \int_{x}^{x + \delta x} f_X(u) du \approx \delta x \cdot f(x)$$
$$\mathbb{P}(a < X \le b) = \int_{a}^{b} f_X(x) dx = \mathbb{P}(a \le X < b)$$

So for $S \subset \mathbb{R}$ (S "nice" for example interval or countable union of intervals).

$$\mathbb{P}(X \in S) = \int_{S} f_X(u) \mathrm{d}u$$

Key Takeaways

- The CDF is a collection of probabilities
- PDF is *not* a probability. How to use? Integrate it to get a probability.

Examples

(1) Uniform distribution $X \sim U[a, b]$ $(a, b \in \mathbb{R}, a < b)$.

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$
$$F_X(x) = \int_a^x f_X(u) du \frac{x-a}{b-a}$$

for $a \leq x \leq b$.

Question: "Limit of discrete uniform random variables?"

(2) Exponential distribution $\lambda > 0$.

$$X \sim \operatorname{Exp}(\lambda)$$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

Check:

(i)
$$\geq 0$$
? Yes
(ii) $\int_0^\infty f_X(x) = [-e^{-\lambda x}]_0^\infty = 1.$
 $F_X(x) = \mathbb{P}(X \geq x) = \int_0^x \lambda e^{-\lambda u} du = 1 - e^{-\lambda x}$

Remember:

$$\mathbb{P}(X \ge x) = 1 - F_X(x) + \mathbb{P}(X = x) = e^{-\lambda x}$$

"Limit of (rescaled) geometric distribution". Good way to model *arrival times* "how long to wait before something happens" \rightarrow link to Poisson usage \leftrightarrow Part II Applied Probability.

Memoryless Probability

(Conditional \mathbb{P} works as before). $X \sim \text{Exp}(\lambda), s, t > 0$.

$$\mathbb{P}(X \ge s + t \mid X \ge s) = \frac{\mathbb{P}(X \ge s + t)}{\mathbb{P}(X \ge s)}$$
$$= \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}}$$
$$= e^{-\lambda t}$$
$$= \mathbb{P}(X \ge t)$$

Exercise: X memoryless $\iff X \sim \text{Exp}(\lambda)$. (continuous random variable with a density).

Expectation of Continuous Random Variables

Definition. X has density f_X . The expectation is $\mathbb{E}[X] := \int_{-\infty}^{\infty} x f_X(x) dx$ and $\mathbb{E}[g(X)] := \int_{-\infty}^{\infty} g(x) f_X(x) dx$

Technical Comment: assumes at most one of

$$\int_{-\infty}^{0} |x| f_X(x) \mathrm{d}x$$

and

$$\int_0^\infty x f_X(x) \mathrm{d}x$$

is infinite.

Linearity of expectation:

$$\mathbb{E}[\lambda X + \mu Y] = \lambda \mathbb{E}[X] + \mu \mathbb{E}[Y]$$

as before.

Claim. $X \ge 0$. Then

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) \mathrm{d}x$$

Proof.

$$\mathbb{E}[X] = \int_0^\infty x f_X(x) dx$$

= $\int_0^\infty \left(\int_0^x 1 du \right) f_X(x) dx$
= $\int_0^\infty du \int_u^\infty dx f_X(x)$
= $\int_0^\infty du \mathbb{P}(X \ge u)$

Start of lecture 18

<u>Variance</u>:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$Var(aX + b) = a^2 Var(X)$$

Examples

Uniform: $U \sim U[a, b]$.

$$\mathbb{E}[U] = \int_{a}^{b} x \frac{\mathrm{d}x}{b-a} = \frac{\frac{1}{2}b^{2} - \frac{1}{2}a^{2}}{b-a} = \frac{a+b}{2}$$
$$\mathbb{E}[U^{2}] = \int_{a}^{b} x^{2} \frac{\mathrm{d}x}{b-a} = \frac{\frac{1}{3}b^{3} - \frac{1}{3}a^{3}}{b-a} = \frac{1}{3}(a^{2} + ab + b^{2})$$
$$\operatorname{Var}(U) = \frac{1}{3}(a^{2} + ab + b^{2}) - \left(\frac{a+b}{2}\right)^{2}$$
$$= \frac{(b-a)^{2}}{12}$$

Exponential: $X \sim \text{Exp}(\lambda)$.

$$\mathbb{E}[X] = \int_0^\infty \lambda x e^{-\lambda x} dx$$

= $[-xe^{-\lambda x}]_0^\infty + \int_0^\infty e^{-\lambda x} dx$
= $\frac{1}{\lambda}$
$$E[X^2] = \int_0^\infty \lambda x^2 e^{-\lambda x} dx$$

= $[-x^2 e^{-\lambda x}]_0^\infty + 2 \int_0^\infty x e^{-\lambda x} dx$
= $0 + \frac{2}{\lambda^2}$
$$Var(X) = \frac{2}{\lambda^2} - \frac{1}{\lambda^2}$$

= $\frac{1}{\lambda^2}$

<u>Goal</u>: $U \sim \text{Unif}[a, b], \tilde{U} \sim \text{Unif}[0, 1]$. Write $U = (b - a)\tilde{U} + a$, and carry all calculations over.

Transformations of Continuous Random Variables

<u>Goal</u>: View g(X) as a continuous random variable with its own density.

Theorem. • X continuous random variable with density f

• $g: \mathbb{R} \to \mathbb{R}$ continuous such that

(i) g is either strictly increasing or decreasing

(ii) g^{-1} is differentiable

Then g(X) is a continuous random variable with density

$$\hat{f}(x) = f(g^{-1}(x)) \underbrace{\left| \frac{\mathrm{d}}{\mathrm{d}x} g^{-1}(x) \right|}_{(+)}$$
 (*)

(† is ≥ 0 if g is strictly increasing).

Comments

- Density is? Something to integrate over to get a probability
- (*) is integration by substitution

• Proof use CDFs (which *are* probabilities).

Proof.

$$F_{g(X)}(x) = \mathbb{P}(g(X) \le x)$$
$$= \mathbb{P}(X \le g^{-1}(x))$$
$$= F_X(g^{-1}(X))$$

Differentiate:

$$F'_{g(X)}(x) = F'_X(g^{-1}(x))\frac{d}{dx}g^{-1}(x)$$
$$= f(g^{-1}(x))\frac{d}{dx}g^{-1}(x)$$

 $(g \text{ strictly decreasing is similar} \rightarrow \text{exercise (revision!)})$

Sanity check: We've got two expressions for $\mathbb{E}[g(x)]$ (assume: $\text{Im}(X) = \text{Im}(g(X)) = \overline{(-\infty,\infty)}$) new expression:

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} x \hat{f}(x) dx$$
$$= \int_{-\infty}^{\infty} x f(g^{-1}(x)) \frac{d}{dx} g^{-1}(x) dx$$

Substitute: $g^{-1}(x) = u$. So $du = dx \frac{d}{dx} g^{-1}(x)$.

$$= \int_{u=-\infty}^{\infty} g(u) f(u) \mathrm{d}u$$

Example. •
$$X \sim \operatorname{Exp}(\lambda), Y = cX$$
.
 $\mathbb{P}(Y \le x) = \mathbb{P}\left(X \le \frac{X}{c}\right) = 1 - e^{-\lambda \frac{x}{c}} = 1 - e^{-\frac{\lambda}{c}x} = \operatorname{CDF} \text{ of } \operatorname{Exp}\left(\frac{\lambda}{c}\right)$
• $\hat{f}(x) = \frac{1}{c}f\left(\frac{x}{c}\right) = \frac{1}{c}\lambda e^{-\lambda \frac{x}{c}} = \frac{\lambda}{c}e^{-\frac{\lambda}{c}x}.$

Example. The Normal Distribution (also Gaussian). Range: $(-\infty, \infty)$. Two parameters: $\mu \in (-\infty, \infty), \sigma^2 \in (0, \infty)$. (the mean and variance).

$$X \sim N(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Special case: "Standard normal": $Z \sim N(0, 1)$

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} =: \varphi(x)$$

Comments

- $\frac{1}{\sqrt{2\pi}}$ is a "normalising constant". (Recall we need $\int f dx = 1$).
- $e^{-\frac{x^2}{2}} =$ very rapid decay as $x \to \pm \infty$.
- $N(\mu, \sigma^2)$ used for modelling non-negative quantity. (because if μ is large $\mathbb{P}(N(\mu, \sigma^2) < 0)$ is *very* small).

Checklist

(Z, standard normal)

(i) f_Z is a density. *Proof.*

$$I = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \mathrm{d}x$$

Clever idea: use I^2 instead

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{u^{2}}{2}} e^{-\frac{v^{2}}{2}} \mathrm{d}u \mathrm{d}v = \iint e^{-\frac{u^{2}+v^{2}}{2}} \mathrm{d}u \mathrm{d}v$$

Polar coordinates: $u = r \cos \theta$, $v = r \sin \theta$:

$$= \int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} r e^{-\frac{r^2}{2}} \mathrm{d}r \mathrm{d}\theta = 2\pi \int_{r=0}^{\infty} r e^{-\frac{r^2}{2}} \mathrm{d}r = 2\pi$$

(ii) $\mathbb{E}[Z] = 0$ by symmetry.

(iii) $\operatorname{Var}(Z) = 1$. Proof. Sufficient to prove $\mathbb{E}[Z^2] = 1$.

$$\mathbb{E}[Z^2] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 e^{-\frac{x^2}{2}} dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \cdot x e^{-\frac{x^2}{2}} dx$$
$$= \left[-x \cdot \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \right]_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx$$
$$= 1$$

Start of
lecture 19Studying $N(\mu, \sigma^2)$ via linear transformations
Facts about $X \sim N(\mu, \sigma^2)$:

- (i) X has the same distribution as $\mu + \sigma Z$ where $Z \sim N(0, 1)$.
- (ii) X has CDF

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

Notation. Φ is the CDF of N(0,1)

(iii)
$$\mathbb{E}[X] = \mu$$
, $\operatorname{Var}(X) = \sigma^2$.

Proof.

(i) $g(z) = \mu + \sigma z$ so $g^{-1}(x) = \frac{x-\mu}{\sigma}$. Then g(Z) has density

$$= \frac{1}{\sigma} f_Z \left(\frac{x - \mu}{\sigma} \right)$$
$$= \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}}$$

(ii)
$$F_{g(Z)}(x) = \mathbb{P}(g(Z) \le x) = \mathbb{P}\left(Z \le \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

(iii) Use part (i):

$$\mathbb{E}[X] = \mathbb{E}[\mu + \sigma Z] = \mu + \sigma \mathbb{E}[Z] = \mu$$
$$\operatorname{Var}(\mu + \sigma Z) = \sigma^2 \operatorname{Var}(Z) = \sigma^2$$

Usage: $X \sim N(\mu, \sigma^2)$

$$\mathbb{P}(a \le X \le b) = \mathbb{P}\left(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$$
$$= \mathbb{P}\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

Special case:

 $a = \mu - k\sigma, \qquad b = \mu + k\sigma$

 $(k \in \{1, 2, ...\})$. Recall: σ is the standard deviation.

$$\mathbb{P}(a \le X \le b) = \Phi(k) - \Phi(-k)$$

"within k standard deviations of the mean".

Definition. X a continuous random variable. The *median* of X is the number m such that $\mathbb{P}(X \leq m) = \mathbb{P}(X \geq m) = \frac{1}{2}$, i.e.

$$\int_{-\infty}^{m} f_X(x) \mathrm{d}x = \int_{m}^{\infty} f_X(x) \mathrm{d}x = \frac{1}{2}$$

Comments

- For $X \sim \mathcal{N}(\mu, \sigma^2)$ and other distributions symmetric about mean, we have median $m = \mathbb{E}[X]$.
- Sometimes |X m| better than $|X \mu|$ for interpretation.

More than one continuous Random Variables

Allow random variables to take values in \mathbb{R}^n . For example

$$X = (X_1, \dots, X_n) \in \mathbb{R}^n$$

is a random variable. Say X has density $f: \mathbb{R}^n \to [0,\infty)$ if

$$\mathbb{P}(X_1 \le x_1, \dots, x_n \le x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(u_1, \dots, u_n) \prod_i \mathrm{d}u_i$$

(integrate over $(-\infty, x_1] \times \cdots \times (-\infty, x_n]$)

Consequence:

$$\mathbb{P}((X_1,\ldots,X_n)\in A) = \int_A f(u)\mathrm{d}u$$

for all "measurable" $A \subset \mathbb{R}^n$.

Definition. f is called a *multivariate density function* or (especially n = 2) a *joint density*.

Definition. Random variables X_1, \ldots, X_n independent if $\mathbb{P}(X_1 \le x_1, \ldots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdots \mathbb{P}(X_n \le x_n)$ (*)

<u>Goal</u>: convert to statement about densities.

Definition.
$$X = (X_1, \dots, X_n)$$
 has density f . The marginal density f_{X_i} of X_i is
$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) \prod_{j \neq i} dx_j$$

"density of X_i viewed as a random variable by itself".

Theorem 1. $X = (X_1, \ldots, X_n)$ has density f.

(a) if X_1, \ldots, X_n independent, with marginals f_{X_1}, \ldots, x_{X_n} . Then

$$f(X_1,\ldots,X_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

(b) Suppose f factorises as

$$f(X_1,\ldots,X_n) = g_1(x_1)\cdots g_n(x_n)$$

for non-negative functions (g_i) . Then X_1, \ldots, X_n are independent and marginal $f_{X_i} \propto g_i$.

Proof.

(a)

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdots \mathbb{P}(X_n \le x_n)$$
$$= \left[\int -\infty^{\infty} f_{X_1}(u_1) du_1 \right] \cdots \left[\int_{-\infty}^{\infty} f_{X_n}(u_n) du_n \right]$$
$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_n} \prod f_{X_i}(u_i) \prod du_i$$

which matches with definition of f.

(b) Idea:

• Replace
$$g_i(x)$$
 with $h_i(x) = \frac{g_i(x)}{\int g_i(u) du}$. h_i is a density.

• compute integral at (*)

Transformation of Multiple Random Variables

Key Example 1: X, Y independent with densities f_X, f_Y . Goal: density of Z = X + Y.

Step 1: Declare the joint density

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Step 2: CDF of Z:

$$\mathbb{P}(X+Y \le z) = \iint_{\{x+y \le z\}} f_{X,Y}(x,y) dx dy$$

=
$$\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{z-x} f_X(x) f_Y(y) dx dy$$

=
$$\int_{x=-\infty}^{\infty} \int_{y'=-\infty}^{z} f_Y(y'-x) f_X(x) dy' dx$$
 substitute $y' = y + x$
=
$$\int_{y=-\infty}^{x} dy \left(\int x = -\infty^{\infty} f_Y(y-x) f_X(x) dx \right)$$

So density of Z:

$$f_Z(z) = \underbrace{\int_{x=-\infty}^{\infty} f_Y(z-x) f_X(x) \mathrm{d}x}_{\text{Convolution of } f_X \text{ and } f_Y}$$

Start of lecture 20

Note. The discrete equivalent is $X,Y\geq 0$ independent, $\mathbb{P}(X+Y)=k)=\sum_{l=0}^k\mathbb{P}(X=l)\mathbb{P}(Y=k-l)$

Example.
$$X, Y \stackrel{\text{IID}}{\sim} \text{Exp}(\lambda)$$
. $Z = X + Y$.

$$f_Z(z) = \int_{x=0}^z \lambda^2 e^{-\lambda x} e^{-\lambda(z-x)} dx$$

$$= \lambda^2 \int_{x=0}^z e^{-\lambda z} dz$$

$$= \lambda^2 z e^{-\lambda z}$$

Definition. $X \sim J(n, \lambda)$ Gamma distribution. $\lambda > 0, n \in \{1, 2, ...\}$. Range is $[0, \infty)$. Density:

$$f_X(x) = e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!}$$
$$n = 1 \mapsto \operatorname{Exp}(\lambda)$$
$$n = 2 \mapsto \lambda^2 x e^{-\lambda x}$$

So $X + Y \sim J(2, \lambda)$. (and in fact: $X_1 + \dots + X_n \sim J(n, \lambda)$).

Example. $X_1 \sim \mathcal{N}(\sigma_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ independent. Then: $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

Note. Already know that

$$\mathbb{E}[X_1 + X_2] = \mu_1 + \mu_2 \qquad \text{Var}(X_1 + X_2) = \sigma_1^2 + \sigma_2^2$$

Proof.

- Calculation exercise
- Generating functions?? Coming up.

Theorem. Let $X = (X_1, \ldots, X_n)$ on D. $g : \mathbb{R}^n \to \mathbb{R}^n$ well-behaved.

 $U = g(X) = (U_1, \dots, U_n)$

Joint density $f_X(x)$ is continuous. Then joint density

$$f_U(\mathbf{u}) = f_X(g^{-1}(\mathbf{u}))|J(\mathbf{u})|$$

where

$$J = \det\left(\left(\frac{\partial [g^{-1}]_i}{\partial u_j}\right)_{i,j=1}^n\right)$$

"Jacobean" $(d \times d \text{ matrix})$

"Proof" Definition of multivariate integration by substitution.

Example (Radial Symmetry). $X, Y \stackrel{\text{IID}}{\sim} N(0, 1)$. Write $(X, Y) = (R \cos \theta, R \sin \theta)$. Range: $R > 0, \theta \in [0, 2\pi)$.

$$f_{X,Y}(x,y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$
$$= \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}$$

Note.

$$|\text{Jacobean of } g^{-1}| = \frac{1}{|\text{Jacobean of } g|}$$

$$J = \begin{vmatrix} \cos \theta & \sin \theta \\ -R \sin \theta & R \cos \theta \end{vmatrix} = R(\cos^2 \theta + \sin^2 \theta) = R$$

So $f_{R,\theta}(r,\theta) = \frac{1}{2\pi}e^{-\frac{r^2}{2}} \times r$. Marginal:

$$f_{\theta}(\theta) = \frac{1}{2\pi}$$
$$f_{R}(r) = e^{-\frac{r^{2}}{2}} \times$$

r

Conclusion: θ , R are independent. θ is uniform on $[0, 2\pi)$.

Note. Change of range: for example $X, Y \ge 0, Z = X + Y$.

$$f_{X,Z}(x,z) = ?(x,z)\mathbb{1}_{(Z \ge x)}$$

so X, Z not independent, even if ? splits as a product.

Moment Generating Function

Definition. Let X have density f. The MGF of X is:

$$m_X(\theta) := \mathbb{E}[e^{\theta X}] = \int_{-\infty}^{\infty} e^{\theta x} f(x) \mathrm{d}x$$

whenever this is finite.

Note. $m_X(0) = 1$.

Theorem. The MGF uniquely determines distribution of a random variable whenever it exists for all $\theta \in (-\varepsilon, \varepsilon)$ for some $\varepsilon > 0$.

Theorem. Suppose $m(\theta)$ exists for all $\theta \in (-\varepsilon, \varepsilon)$. Then

$$m^{(n)}(0) = \frac{\mathrm{d}^n}{\mathrm{d}\theta^n} m(\theta) \big|_{m=0} = \mathbb{E}[X^n]$$

 $(\mathbb{E}[X^n]$ is the "*n*-th moment")

Proof comment: $\frac{\partial e^{\theta x}}{\partial \theta} = x^n e^{\theta x}$.

Claim. X_1, \ldots, X_n independent.

$$X = X_1 + \dots + X_n$$

Then

$$m_X(\theta) = \mathbb{E}[e^{\theta(X_1 + \dots + X_n)}]$$

= $\mathbb{E}[e^{\theta X_1}] \cdots \mathbb{E}[e^{\theta X_n}]$
= $\prod m_{X_i}(\theta)$

Example. Gamma distribution: $X \sim J(n, \lambda)$.

$$f_X(x) = e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!}$$

$$\begin{split} m(\theta) &= \int_0^\infty e^{\theta x} e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!} \mathrm{d}x \\ &= \int_0^\infty e^{-(\lambda-\theta)x} x^{n-1} \frac{\lambda^n}{(n-1)!} \mathrm{d}x \\ &= \left(\frac{\lambda}{\lambda-\theta}\right)^n \int_0^\infty e^{-(\lambda-\theta)x} x^{n-1} \frac{(\lambda-\theta)^n}{(n-1)!} \mathrm{d}x \\ &= \left(\frac{\lambda}{\lambda-\theta}\right)^n \end{split}$$

 $(\theta < \lambda \text{ (and infinite if } \theta \geq \lambda))$

$$\operatorname{Exp}(\lambda) \to \left(\frac{\lambda}{\lambda-\theta}\right) \operatorname{MGF}$$

We've proved

$$X_1 + \dots + X_n \sim J(n,\lambda)$$

Start of lecture 21

Example. $X \sim N(\mu, \sigma^2)$ $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $m_X(\theta) = \exp\left(\theta\mu + \frac{\theta^2\mu^2}{2}\right)$ So $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2)$ independent. $m_{X_1+X_2}(\theta) = \exp\left(\theta\mu_1 + \frac{\theta^2\mu_1^2}{2}\right) \exp\left(\theta\mu_2 + \frac{\theta^2\sigma^2}{2}\right)$ $= \exp\left(\theta(\mu_1 + \mu_2) + \frac{\theta^2}{2}(\sigma_1^2 + \sigma_2^2)\right)$

MGF of N(
$$\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$$
)

Convergence of Random Variables

Definition. Let $(X_n)_{n\geq 1}$ and X be random variables. We say X_n converges to X in distribution and write $X_n \xrightarrow{d} X$ if

$$F_{X_n}(x) \to F_X(x) \tag{(*)}$$

for all $x \in \mathbb{R}$ which are continuity points of F_x .

• (*) holds for all $x \in [0, 1]$.

Example 2.

$$X_n = \begin{cases} 0 & \text{with } \mathbb{P} = \frac{1}{2} \\ 1 + \frac{1}{n} & \text{with } \mathbb{P} = \frac{1}{2} \end{cases}$$
$$X_n \to \text{Bern}\left(\frac{1}{2}\right)$$

since $F_{X_n}(x) = \frac{1}{2}$ for all $x \in (0,1)$, $F_{X_n}(x) = 1$ for all x > 1. When n is large

$$F_{X_n}(1) = \frac{1}{2}$$
 $F_X(1) = 1$

But $F_X(\bullet)$ has a discontinuity at x = 1. (i.e. deterministic convergence of reals)

Consequences

(1) If X is a constant c, then equivalent to:

$$\forall \varepsilon > 0 \qquad \mathbb{P}(|X_n - c| > \varepsilon) \to 0$$

as $n \to \infty$. "convergence in probability to constant".

(2) If X is a continuous random variable: $X_n \xrightarrow{d} X$. Usage:

$$\mathbb{P}(a \le X_n \le b) \to \mathbb{P}(a \le X \le b)$$

for all $a, b \in [-\infty, \infty]$.

Note. Does not say that *densities* converge. For example, in Example 1 no density.

Laws of Large Numbers

 $\tfrac{S_n}{n}``\to''\mu.$

Theorem (Weak LLN). Setup: $(X_n)_{n\geq 1}$ IID with $\mu = \mathbb{E}[X_1] < \infty$. Set $S_n = X_1 + \dots + X_n \quad \forall n \geq 0$ Then $\forall \varepsilon > 0$: $\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \to 0$ as $n \to \infty$.

Proof. (assume $\operatorname{Var}(X_1) = \sigma^2 < \infty$)

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) = \mathbb{P}(|S_n - n\mu| > \varepsilon n)$$
$$\leq \frac{\operatorname{Var}(S_n)}{\varepsilon^2 n^2}$$
$$= \frac{n\sigma^2}{\varepsilon^2 n^2}$$
$$\to 0$$

as $n \to \infty$. (Note that ε is fixed, not $\varepsilon \to 0$!)

Central Limit Theorem

Theorem (CLT). Same setup as previous. Demand $\sigma^2 < \infty$. Then

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{d} \mathcal{N}(0, 1)$$

as $n \to \infty$.

Discussion: three stage summary

- (1) Distribution of S_n concentrated on $n\mu$ (WLLN)
- (2) Fluctuations around $n\mu$ have order \sqrt{n} (New and important)
- (3) Shape is normal (Detail)

Usage:

(i) $S_n \stackrel{d}{\approx} \mathcal{N}(n\mu, n\sigma^2)$

(ii)

$$\mathbb{P}(a \le S_n \le b) = \mathbb{P}\left(\frac{a - n\mu}{\sqrt{n\sigma^2}} \le \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \le \frac{b - n\mu}{\sqrt{n\sigma^2}}\right)$$
$$\approx \mathbb{P}\left(\frac{a - n\mu}{\sqrt{n\sigma^2}} \le Z \le \frac{b - n\mu}{\sqrt{n\sigma^2}}\right)$$

Get a nice answer if $a = n\mu + z_a\sqrt{n}$ and $b = n\mu + z_b\sqrt{n}$.

Theorem (Continuity theorem for MGFs). $(X_n), X$ have MGFs $m_{X_n}(\bullet), m_X(\bullet)$

- $m_X(\theta) < \infty$ for $\theta \in (-\varepsilon, \varepsilon)$
- if $m_{X_n}(\theta) \to m_X(\theta)$ for all θ such that $m_X(\theta) < \infty$.

Then $X_n \stackrel{d}{\to} X$.

Proof. Part II Probability and Measure.

Idea: Expand $m_X(\theta)$ as Taylor series around 0.

$$m_X(\theta) = 1 + m'_X(0)\theta + \frac{m''_X(0)}{2!}\theta^2 + \cdots$$
$$= 1 + \theta \mathbb{E}[X] + \frac{\theta^2}{2} \mathbb{E}[X^2] + o(\theta^2)$$

Proof: (WLLN via MGFs).

Remark. Know MGF of S_n . Want to study the MGF of $\frac{S_n}{n}$.

m

$$\frac{S_n}{n}(\theta) = \mathbb{E}[e^{\theta - \frac{n}{n}}]$$

$$= \mathbb{E}[e^{\frac{\theta}{n}S_n}]$$

$$= m_{S_n}\left(\frac{\theta}{n}\right)$$

$$= m_{X_1}\left(\frac{\theta}{n}\right) \cdots m_{X_n}\left(\frac{\theta}{n}\right)$$

$$= \left(1 + \mu \frac{\theta}{n} + o(\theta)\right)^n$$

0 S-

MGF of the random variable $X = \mu$ with $\mathbb{P} = 1$. So $\frac{S_n}{n} \xrightarrow{d} \mu$ by the continuity theorem.

Theorem (Strong LLN). Same setup: Then

$$\mathbb{P}\left(\frac{S_n}{n} \to \mu \text{ as } n \to \infty\right) = 1.$$

"almost sure convergence" or "convergence with probability 1".

Proof (CLT with MGFs). Assume WLOG $\mu = 0$ and $\sigma^2 = 1$. (So $\mathbb{E}[X_i^2] = 1$). (In general $X \mapsto \frac{X-\mu}{\sqrt{\sigma^2}}$). Start of lecture 22

$$\frac{S_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{N}(0,1)$$

 $\underline{\text{Goal}}$:

Study MGF of $\frac{S_n}{\sqrt{n}}$.

$$m_{X_i}(\theta) = 1 + \frac{\theta^2}{2} + o\left(\frac{1}{n}\right)$$
$$m_{\frac{S_n}{\sqrt{n}}}(\theta) = \mathbb{E}[e^{\theta \frac{S_n}{\sqrt{n}}}]$$
$$= \mathbb{E}[e^{\frac{\theta}{\sqrt{n}}S_n}]$$
$$= m_{S_n}\left(\frac{\theta}{\sqrt{n}}\right)$$
$$= \left(m_{X_1}\left(\frac{\theta}{\sqrt{n}}\right)\right)^n$$
$$= \left(1 + \frac{\theta^2}{2n} + o\left(\frac{1}{n}\right)\right)^n$$
$$\to e^{\frac{\theta^2}{2}}$$

Inequalities for $\mathbb{E}[f(X)]$

Motivation: $f(x) = x^2$. We know

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$$

via $\operatorname{Var}(X) \ge 0$. What about general f?

<u>Consequence</u>: $\forall y$ there exists a line l(x) = mx + c such that

• $l(x) \leq f(x)$ for all x

•
$$l(y) = f(y)$$

Proof. Convexity implies that for all x < y < z,

$$\frac{f(y) - f(x)}{y - x} \le \frac{f(z) - f(y)}{z - y}$$

hence

$$M^{-} := \sup_{x < y} \frac{f(y) - f(x)}{y - x} \le \inf_{z > y} \frac{f(z) - f(y)}{z - y} =: M^{+}$$

any value $m \in [M^-, M^+]$ works as the gradient of $l(\bullet)$.

<u>Fact</u>: if f is twice differentiable then

 $f \text{ convex } \iff f''(x) \ge 0 \ \forall \ x$

for example $f(x) = \frac{1}{x}$ is convex on $(0, \infty)$ and concave on $(-\infty, 0)$.

Jensen's Inequality

Theorem (Jensen's Inequality). X a random variable, f convex: Then $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$. (reverse if f concave)

Proof. Set $y = \mathbb{E}[X]$ as in (*), l(x) = mx + c, such that $l(y) = f(y) = f(\mathbb{E}[X])$ and $f \ge l$.

$$\mathbb{E}[f(X)] \ge \mathbb{E}[l(X)]$$

= $\mathbb{E}[mX + c]$
= $m\mathbb{E}[X] + c$
= $my + c$
= $f(\mathbb{E}[X])$

If f strictly convex, then $\forall t \in (0,1), \forall x \neq y$,

$$f(tx + (1 - t)y) < tf(x) + (1 - t)f(y)$$

Then equality in Jensen's inequality only if $X = \mathbb{E}[X]$ with $\mathbb{P} = 1$ (for example constant random variable).

Informal comment:

Jensen's Inequality \geq Most other inequalities!

Application to Sequences

AM-GM inequality: $x_1, \ldots, x_n \in (0, \infty)$

$$\frac{x_1 + \dots + x_n}{n} \ge \left(\prod_{i=1}^n x_i\right)^{1/n}$$

Case n = 2:

$$\frac{x+y}{2} \ge \sqrt{xy}$$

Proof. Rearrange to get $(x - y)^2 \ge 0$.

General proof:

Let X be a random variable taking values $\{x_1, \ldots, x_n\}$ each with probability $\frac{1}{n}$. Take: $f(x) = -\log x$. Check convex: second derivative ≥ 0 . Jensen:

$$\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$$
$$-\frac{\log x_1 + \dots + \log x_n}{n} \ge -\log\left(\frac{x_1 + \dots + x_n}{n}\right)$$
$$\log((x_1 \cdots x_n)^{1/n}) \le \log\left(\frac{x_1 + \dots + x_n}{n}\right)$$

 $\log x$ and e^x are increasing so

$$\left(\prod_{i} x_{i}\right)^{1/n} \le \frac{x_{1} + \dots + x_{n}}{n}$$

Sampling a Continuous Random Variable

Theorem. X a continuous random variable with CDF F. Then if $U \sim U[0, 1]$, we have

$$Y = F^{-1}(U) \sim X$$

Proof. Goal: find CDF of Y.

$$\mathbb{P}(Y \le x) = \mathbb{P}(F^{-1}(U) \le x)$$
$$= \mathbb{P}(U \le F(x))$$
$$= F(x)$$

so CDF of Y =CDF of X. So $Y \sim X$.

Rejection Sampling

Idea: Uniform on $[0,1]^d$ is easy. (take $(U^{(1)},\ldots,U^{(d)})$ IID on U[0,1].)

What about uniform on A? Goal:

$$f(x) = \begin{cases} \frac{1}{\operatorname{area}(A)} & x \in A\\ 0 & x \notin A \end{cases}$$

(in higher dimensions, volume $(A)^{-1}$)

Rewrite as

Start of

lecture 23

$$f(x) = \frac{\mathbb{1}_A}{\operatorname{area}(A)}$$

Let U_1, U_2, \ldots IID uniform on $[0, 1]^d$ and let $N = \min\{n : U_n \in A\}$.

Claim. U_N is uniform on A. (i.e. has density f)

Proof. Note $\mathbb{P}(N < \infty) = 1$ if area(A) > 0. <u>Goal</u>:

$$\mathbb{P}(U_n \in B) = \int_B f(x) \mathrm{d}x = \frac{\mathrm{area}(B)}{\mathrm{area}(A)}$$

for all $B\subset A$ with a well-defined area.

$$\mathbb{P}(U_n \in B) = \sum_{n \ge 1} \mathbb{P}(U_n \in B, N = n)$$

$$= \sum_{n \ge 1} \mathbb{P}(U_1 \notin A, \dots, U_{n-1} \notin A, U_n \in B)$$

$$= \sum_{n \ge 1} \mathbb{P}(U_1 \notin A)^{n-1} \mathbb{P}(U_n \in B)$$

$$= \sum_{n \ge 1} (1 - \operatorname{area}(A))^{n-1} \times \operatorname{area}(B)$$

$$= \frac{\operatorname{area}(B)}{1 - (1 - \operatorname{area}(A))}$$

$$= \frac{\operatorname{area}(B)}{\operatorname{area}(A)}$$

Idea: X a continuous random variable on [0, 1], density f is bounded. Let

$$A = \{(x, y) : x \in [0, 1], y \le f_X(x)\}$$

i.e. shaded region

Let $U = (U^{(1)}, U^{(2)})$ be uniform on A. Then claim: $U^{(1)} \sim X$. Why?

$$\mathbb{P}(U^{(1)} \le u) = \mathbb{P}(\text{in relevant area})$$

= area({x, y} : x \le u, y \le f_X(x))
= $\int_0^u f_X(x) dx$
= $F_X(u)$

(note that the first and last expressions are the CDFs of $U^{(1)}$ and X respectively) Usage: in higher dimension.

X a continuous random variable on $[-K, K]^d$ with density bounded. Let

 $A = \{ (\mathbf{x}, y) : x \in [-K, K]^d, y \le f_X(x) \} \subset \mathbb{R}^{d+1}$

Let $U = (\mathbf{U}, U^+)$. Then $\mathbf{U} \sim X$. (the proof is similar).

Multivariate Normals / Gaussians

Definition. A random variable is *Gaussian* if $X \sim N(\mu, \sigma^2)$.

Motivation: X, Y independent Gaussian. Then bX + cY is Gaussian (*). Exercise: there exist joint random variables (X, Y) such that both X, Y are Gaussian, but X + Y not Gaussian.

Question: Can we have dependent X, Y such that (*) still holds?

Definition. Random vector (X, Y) is *Gaussian* if bX + cY are Gaussian for all $b, c \in \mathbb{R}$, i.e. $bX + cY \sim N(??, ??)$.

Consequences:

$$\mathbb{E}[bX + cY] = b\mathbb{E}[X] + c\mathbb{E}[Y]$$
$$\operatorname{Var}(bX + cY) = b^{2}\operatorname{Var}(X) + c^{2}\operatorname{Var}(Y) + 2bc\operatorname{Cov}(X, Y)$$

Linear Algebra Rewrite

Random vector $X = (X_1, \ldots, X_n) \in \mathbb{R}^n$ is *Gaussian* if $u^\top X$ is Gaussian $\forall u \in \mathbb{R}^n$. Write $\mu = \mathbb{E}[X] \in \mathbb{R}^n$.

Covariance matrix:

$$V = (\operatorname{Cov}(X_i, X_j))_{i,j=1}^n \in \mathbb{R}^n \times \mathbb{R}^n$$

i.e. for n = 2:

$$V = \begin{pmatrix} \operatorname{Var}(X) & \operatorname{Cov}(X,Y) \\ \operatorname{Cov}(Y,X) & \operatorname{Var}(Y) \end{pmatrix}$$

(note V is symmetric). In fact $u^{\top}X \sim \mathcal{N}(u^{\top}\mu, u^{\top}Vu)$.

MGFs in One Direction (Recap)

Distribution of $X \in \mathbb{R}$ determined by function $m_X(\theta) = \mathbb{E}[e^{\theta X}], \theta \in (-\varepsilon, \varepsilon).$

MGFs in \mathbb{R}^n

Distribution of $X \in \mathbb{R}^n$ determined by

$$m_X(u) = \mathbb{E}[e^{u^\top X} \qquad u \in (-\varepsilon, \varepsilon)^n$$

If X Gaussian, then

$$m_X(u) = \exp\left(u^\top \mu + \frac{1}{2}u^\top V u\right)$$

Logical overview: $X \in \mathbb{R}^n$ Gaussian

- distribution defined by MGF
- MGF defined by μ and V

 \implies distribution of X defined by μ and V

Remark. Density:

$$f_X(x) = \frac{1}{(2\pi)^{n/2}} \frac{1}{\sqrt{\det(V)}} \exp\left(-\frac{1}{2}(x-\mu)^\top V(x-\mu)\right)$$

Return to n = 2: For a Gaussian vector (X_1, X_2)

Independent $\iff \operatorname{Cov}(X_1, X_2) = 0$

(Note that the backwards direction is not true in general!)

Why useful? Imagine X_1, X_2 describe real-world parameters, for example height vs 1km running time.

- Independence would be an interesting conclusion
- Cov(?,?) can be sampled.

Start of *Proof.* $X = (X_1, X_2)$ independent. If $m_X((u_1, u_2))$ splits as a product $f_1(u_1)f_2(u_2)$. In our setting:

$$\exp(u^{\top}\mu) = \exp(u_1\mu_2)\exp(u_2\mu_2)$$
$$\exp\left(\frac{1}{2}u^{\top}Vu\right) = \exp(u_1^2\sigma_1^2)\exp(u_2^2\sigma_2^2)\exp(2u_1u_2\operatorname{Cov}(X_1,x_2))$$

So it splits as a product if and only if Cov = 0.

Motivation: $Cov(100X_1, X_2) = 100Cov(X_1, X_2)$ so "large covariance" doesn't imply "very dependent".

lecture 24

Definition. Correlation of X, Y is

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}$$

(It is a fact that this is always $\in [-1, 1]$)

Proposition. If (X, Y) Gaussian, then Y = aX + Z where Z is Gaussian, and (X, Z) independent.

Proof. Define Z = Y - aX for $a \in \mathbb{R}$.

Claim. (X, Z) is Gaussian.

Proof.

$$u_1X + u_2Z = u_1X + u_2(Y - aX) = (u_1 - au_2)X + u_2Y.$$

Goal: find a such that Cov(X, Z) = 0.

$$\operatorname{Cov}(X,Z) = \operatorname{Cov}(X,Y-aX) = \operatorname{Cov}(X,Y) - a\operatorname{Var}(X)$$

so take

$$a = \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}$$

Then Cov(X, Z) = 0 so X, Z independent.

2.1 Two Historical Models

Bertrand's Paradox

Goal: choose a uniform chord of circle. Two methods:

- (i) A, B uniform on circumference.
- (ii) midpoint M uniform on disc.

Conclusion: Gives different distributions. (Completely unsurprising?)

Method (i)

 $\theta \sim \text{Unif}\left[0, \frac{\pi}{2}\right]$ then $|AB| = 2r \sin \theta$. Note $|OM| = r \cos \theta$, so $\mathbb{P}(|OM| \le \varepsilon r) \approx r\varepsilon$ when $\varepsilon \to 0$.

 $\frac{\text{Method (ii)}}{\mathbb{P}(|OM| \le \varepsilon r) = \frac{\pi(\varepsilon r)^2}{\pi r^2} = \varepsilon^2.$

Buffon's Needle

- Lines spaced L apart.
- Needle length L dropped "uniformly"
- Observe whether intersects a line.

We work "modulo L":

Density of (X, θ) constant $= \frac{1}{L\pi}$. Crosses line if

$$X \le \frac{L}{2}\sin\theta$$

$$L - X \leq \frac{L}{2}\sin\theta$$

$$\mathbb{P}(\text{crosses line}) = \mathbb{P}\left(\min(X, L - X) \leq \frac{L}{2}\sin\theta\right)$$

$$= 2\mathbb{P}\left(X \leq \frac{L}{2}\sin\theta\right)$$

$$= 2\int_{\theta=0}^{\pi} \int_{x=0}^{\frac{L}{2}\sin\theta} \frac{1}{L\pi} dx d\theta$$

$$= 2\int_{\theta=0}^{\pi} \frac{1}{2\pi}\sin\theta d\theta$$

$$= \frac{2}{\pi}$$

$$\approx 0.64$$

What's the point? Calculate π experimentally. Efficiency? Try *n* times. Number of intersections: $S_n \sim \text{Bin}\left(n, \frac{\pi}{2}\right)$. Proportion \hat{p}_n of intersections = $\frac{S_n}{n}$. By CLT:

$$\hat{p}_n = p + \sqrt{\frac{p(1-p)}{n}}Z$$
$$\hat{p}_n - p \approx \sqrt{\frac{p(1-p)}{n}}Z$$

Estimate:

$$\hat{\pi}_n = \frac{2}{\hat{p}_n}$$

Taylor expanding:

$$\hat{\pi}_n = \frac{2}{\hat{p}_n}$$
$$\approx \frac{2}{p} - (\hat{p}_n - p)\frac{2}{p^2}$$

 \mathbf{SO}

$$\hat{\pi}_n - \pi \approx -\frac{\pi^2}{2} \sqrt{\frac{p(1-p)}{n}} Z \approx \frac{-2.4}{\sqrt{n}} Z$$

So if you seek

$$\hat{\pi}_n - \pi \approx O(10^{-k})$$

(correct to k decimal places) then we need $n \approx 10^{2k}$.

- Historical interest.
- Not computationally efficient.
- Detailed calculation of *sampling errors* in other settings on problem sheet.

or