% vim: tw=50 % 05/02/2022 10AM \subsection{Back to Central Forces} Since $V = V(r) \implies \nabla V = \dfrac{V}{r} \hat{\bf{r}}$. From Newton's second law and (4.2) we have \[ m (\ddot{r} - r \dot{\theta}) \hat{\bf{r}} + m(r \ddot{\theta} + 2\dot{r} \dot{\theta}) \hat{\bf{\theta}} = -\dfrac{V}{r} \hat{\bf{r}} \] equate $\hat{\bf{\theta}}$ components \[ \implies r \ddot{\theta} + 2 \dot{r} \dot{\theta} = 0 \] \[ \iff \frac{1}{r} \dfrac{}{t} (r^2 \dot{\theta}) = 0 \] \[ \iff l = r^2\theta \] is conserved. This is actually the magnitude (perhaps with a sign) of the angular momentum per unit mass. To see this, look at \[ \bf{L} = m \bf{x} \times \dot{\bf{x}} \stackrel{(4.1)}{=} mr \hat{\bf{r}} \times (\cancel{\dot{r} \hat{\bf{r}}} + r \dot{\theta} \hat{\bf{\theta}}) = mr^2 \dot{\theta} (\hat{\bf{r}} \times \hat{\bf{\theta}}) .\] Equate $\hat{\bf{r}}$ components: $m(\ddot{r} - r \dot{\theta}^2) = -\dfrac{V}{r}$. \\ Replace $\dot{\theta}$ with $l$: \[ \implies m \ddot{r} = -\dfrac{V}{r} = \frac{ml^2}{r^3} :+ -\dfrac{V_{\text{eff}}}{r} \] where $V_{\text{eff}}$ is the ``\emph{effective potential}'': \[ V_{\text{eff}}(R) = V(r) + \frac{ml^2}{2r^2} \] ($\frac{ml^2}{2r^2}$ is called the \emph{angular momentum barrier}.) \myskip This problem has been reduced to the kind of one-dimensional problem we looked at before. The energy of the particle is \begin{align*} E &= \half m \dot{\bf{x}} \cdot \dot{\bf{x}} + V(r) \\ &= \half m \dot{r}^2 + \half mr^2 \dot{\theta}^2 + V(r) \\ &= \half m \dot{r}^2 + \frac{ml^2}{2r^2} + V(r) \\ &= \half m \dot{r}^2 + V_{\text{eff}} (r) \end{align*} \begin{example*}[Inverse Square Law] \[ V = -\frac{k}{r} \implies V_{\text{eff}} = -\frac{k}{r} + \frac{ml^2}{2r^2} .\] ($k > 0$) \begin{center} \includegraphics[width=0.6\linewidth] {images/eee9e89686ab11ec.png} \end{center} The minimum is at $r_* = \frac{ml^2}{k}$ \[ \implies E_{\text{min}} = V_{\text{eff}} (r_*) = -\frac{k^2}{2ml^2} .\] Kinds of motion: \begin{itemize} \item $E = E_{\text{min}} \implies$ particle sits at $r = r_*$. But \[ \dot{\theta} = \frac{l}{r^2} \implies \text{particle moves in a circle at constant angular speed.} \] \item $E_{\text{min}} < E < 0 \implies$ particle oscillates back and forth. Meanwhile, $\dot{\theta} = \frac{l}{r^2}$ also changes. This is a non-circular orbit. (Definitions: The smallest value of $r$ reached by the particle is the \emph{periapsis} (\emph{perehelion} for orbiting the sun). The furthest distance is the \emph{apoapsis} (\emph{aphelion} for the sun).) \item $E > 0 \implies$ this motion is not an orbit. The particle escapes to $\infty$. \end{itemize} \end{example*} \subsubsection*{Stability of Circular Orbits} Circular orbits are equilibrium points, $r_*$, of $V_{\text{eff}}$: \[ V_{\text{eff}}' (r_*) = 0 .\] They are stable if it's a minimum, i.e. $V_{\text{eff}}'' (r_*) > 0$. \myskip For $V(r) = -\frac{k}{r^n}$ for $n \ge 1$ \[ \implies V_{\text{eff}} = -\frac{k}{r^n} + \frac{ml^2}{2r^2} .\] \begin{center} \includegraphics[width=0.6\linewidth] {images/c3753d7c86ac11ec.png} \end{center} \begin{center} \includegraphics[width=0.6\linewidth] {images/d7c8c1d686ac11ec.png} \end{center} Can check that circular orbits are stable for $(n + 1) - 3 < 0 \implies n < 2$. (In a univserse with $d$ space dimensions, potential energy of gravity is $V \sim \frac{1}{r^{d - 2}} \implies$ circular orbits not stable in $d > 3$). \subsubsection*{The Orbit Equations} If we want to compute $r(t)$, we use \[ E = \half m \dot{r}^2 + V_{\text{eff}}(r) .\] and integrate \[ \implies t = \pm \sqrt{\frac{m}{2}} \int \frac{\dd r}{\sqrt{E - V_{\text{eff}}(r)}} \] Here, we'll instead try to understand the shape of the trajectory by computing $r(\theta)$ (can then use $l = r^2 \dot{\theta}$ to get $\theta(t)$ and $r(t)$). \\ A trick: define $u = \frac{1}{r}$. If $r = r(\theta)$ then \[ \dfrac{r}{t} = \dfrac{r}{\theta} \dot{\theta} = \dfrac{r}{\theta} \frac{l}{r^2} = -l \dfrac{u}{\theta} \] and \[ \dfrac[2]{r}{t} = \dfrac{}{t} \left( -l \dfrac{u}{\theta} \right) = -l \dfrac[2]{u}{\theta} \dot{\theta} = -l^2 \dfrac[2]{u}{\theta} \frac{1}{r^2} = -l^2 u^2 \dfrac[2]{u}{\theta} \] The equation of motion is \[ m \ddot{r} - \frac{ml^2}{r^3} = -\frac{V}{r} = F(r) \] \[ - ml^2 u^2 \dfrac[2]{u}{\theta} - ml^2u^3 = F \left( \frac{1}{u} \right) \] \[ \implies \boxed{\dfrac[2]{u}{\theta} + u = -\frac{1}{ml^2u^2} F \left( \frac{1}{u} \right)} \] (this is known as the \emph{orbit equation}).