% vim: tw=50 % 03/02/2022 10AM \subsubsection*{Scaling (Bridgeman's Theorem)} Dimensionful quantities can only appear in equation as powers, for example $L^\alpha$ for some $\alpha$ - can never have more complicated functions. For example \[ e^x = 1 + x + \frac{x^2}{2} + \cdots \] $x$ must be dimensionless. \myskip Suppose we want to compute a quantity $Y$ with dimensions \[ [Y] = M^\alpha L^\beta T^\gamma .\] Let's suppose we wish to express $Y$ in terms of other quantities $X_i$, $i = 1, \dots, n$. Let's pick for example $X_1, X_2, X_3$. We assume that they are \emph{dimensionally independent} (i.e. we can build dimensions of length, mass and time from them). Then, we can write \[ Y = c X_1^{a_1} X_2^{a_2} X_3^{a_3} \] where $c$ is a dimensionless constant. In general it can be a dimensionless combination of $X_i$. In the case where there are no dimensionless combinations, $c$ is just a number. \begin{example*}[Pendulum] We want to know period $T$. Obviously, $[T] = T$. It can depend upon: \begin{itemize} \item mass $m$, $[m] = M$ \item length $l$, $[l] = L$ \item gravity $g$, $[g] = LT^{-2}$ \item starting angle $\theta_0$, $[\theta_0] = 0$, since $\theta_0 \equiv \theta_0 + 2\pi \implies [\theta_0] = [2\pi] = 0$. \end{itemize} The only dimensionless quantity is $\theta_0$, \[ \implies T = c(\theta_0) g^{a_1} m^{a_2} l^{a_3} \] Take dimensions: \begin{align*} T &= [g^{a_1}][m^{a_2}][l^{a_3}] \\ &= L^{a_1 + a_3} T^{-2a_1} M^{a_2} \end{align*} \[ \implies a_1 = -\half, \qquad a_2 = 0, \qquad a_3 = +\half .\] \[ \implies T = c(\theta_0) \sqrt{\frac{l}{g}} \] (often we write $T \sim \sqrt{\frac{l}{g}}$). So if we take two pendulums of different lengths $l_1$ and $l_2$, released at angle $\theta_0$, then \[ \frac{T_1}{T_2} = \sqrt{\frac{l_1}{l_2}} .\] \end{example*} \newpage \section{Central Forces} Study the three-dimensional motion of a particle obeying \[ m \ddot{\bf{x}} = -\nabla V(r) ; \qquad r := |\bf{x}| .\] This could describe: \begin{itemize} \item the position of a particle $\bf{x}$ in a fixed potential \item the separation $\bf{x}$ of two interacting particles where \[ m = \frac{m_1m_2}{m_1 + m_2} .\] \end{itemize} \begin{note*} When one particle is very heavy, this second case reduces to the first. \end{note*} \noindent The angular momentum is conserved \[ \bf{L} = m \bf{x} \times \dot{\bf{x}} \implies \dfrac{\bf{L}}{t} = m \bf{x} \times \ddot{\bf{x}} = -\bf{x} \times \nabla V ,\] which is 0 since $\bf{x} \parallel \nabla V$, so $\bf{L}$ is a fixed vector. But, by construction, $\bf{L} \cdot \bf{x} = 0$. This is the equation for a plane so all motion takes place in a two-dimensional plane perpendicular to $\bf{L}$ (note $\bf{L} \cdot \bf{x} = 0$ too). \begin{center} \includegraphics[width=0.6\linewidth] {images/9e8725ba86a811ec.png} \end{center} \subsection{Polar Coordinates in the Plane} A particle sits at coordinates \[ x = r\cos\theta \qquad y = r\sin\theta \] \begin{center} \includegraphics[width=0.6\linewidth] {images/686b698686a911ec.png} \end{center} and we define unit vectors \[ \hat{\bf{r}} = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \qquad \hat{\bf{\theta}} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} \] These form an orthonormal basis at each point, but they depend on $\theta$. \[ \dfrac{\hat{\bf{r}}}{\theta} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} = \hat{\bf{\theta}} \qquad \dfrac{\hat{\bf{\theta}}}{\theta} = \begin{pmatrix} -\cos\theta \\ -\sin\theta \end{pmatrix} = -\hat{\bf{r}} .\] The position of a particle is $\bf{x} = r \hat{\bf{r}}$, so the velocity is \[ \dot{\bf{x}} = \dot{r} \hat{\bf{r}} + r \dfrac{\hat{\bf{r}}}{\theta} \dot{\theta} = \dot{r} \hat{\bf{r}} + r \dot{\theta} \hat{\bf{\theta}} \tag{4.1} \] $\dot{\theta}$ is \emph{angular velocity}. The acceleration is \[ \ddot{\bf{x}} = \ddot{r} \hat{\bf{r}} + \dot{r} \dfrac{\hat{\bf{r}}}{\theta} \dot{\theta} + \dot{r} \dot{\theta} \hat{\bf{\theta}} + r \ddot{\theta} \hat{\bf{\theta}} + r \dot{\theta} \dfrac{\hat{\bf{\theta}}}{\theta} \dot{\theta} = (\ddot{r} - r \dot{\theta}^2) \hat{\bf{r}} + (r \ddot{\theta} + 2 \dot{r} \dot{\theta}) \hat{\bf{\theta}} \tag{4.2}\] \begin{example*}[Circular Motion] A particle moving with constant angular speed in a circle has $\dot{r} = 0$, $\dot{\theta} = \omega$ \[ (4.1) \implies \dot{\bf{x}} = r\omega \hat{\bf{\theta}} \] and so the speed is $|\dot{\bf{x}}| = r\omega$. The acceleration is \[ (4.2) \implies \ddot{\bf{x}} = -r \omega^2 \hat{\bf{r}} \implies a = |\ddot{\bf{x}}| = r\omega^2 .\] If we want a particle to move like this, Newton's second law states that we must supply a \emph{centripetal force} toward to the origin. \end{example*}