% vim: tw=50 % 27/01/2022 10AM \subsection{Potential in 3D} Suppose $\bf{F} = \bf{F}(\bf{x})$. \begin{claim*} There exists a conserved energy if and only if the force is of the form $\bf{F} = -\nabla V$, i.e. $F_i = -\pfrac{V(\bf{x})}{x^i}$. Then, \[ E = \half m \dot{\bf{x}} \cdot \dot{\bf{x}} + V(\bf{x}) \] is conserved. \end{claim*} \begin{proof} (To prove $E$ is conserved if $\bf{F} = -\nabla V$): \begin{align*} \dfrac{E}{t} &= m \ddot{\bf{x}} \cdot \dot{\bf{x}} + \pfrac{V}{x^i} \dfrac{x^i}{t} \\ &= \dot{\bf{x}} \cdot (m \ddot{\bf{x}} + \nabla V) \\ &= 0 \end{align*} so $E$ is conserved. \myskip To prove $\bf{F} = -\nabla V$ if $E$ is conserved, we introduce the \emph{work done} $W$ on a particle, which moves from $\bf{x}(t_1)$ to $\bf{x}(t_2)$ along a trajectory $C$. \begin{align*} W := \int_C \bf{F} \cdot \dd \bf{x} \\ &= \int_{t_1}^{t_2} \bf{F} \cdot \dfrac{\bf{x}}{t} \dd t \\ &= m \int_{t_1}^{t_2} \ddot{\bf{x}} \cdot \dot{\bf{x}} \dd t \\ &= m \int_{t_1}^{t_2} \half \dfrac{}{t} (\dot{\bf{x}} \cdot \dot{\bf{x}}) \dd t \\ &= T(t_2) - T(t_1) \end{align*} where $T := \half m \dot{\bf{x}} \cdot \dot{\bf{x}}$ is the kinetic energy. If we want a conserved energy $E = T + V$ \[ \implies W = \int_C \bf{F} \cdot \dd \bf{x} = V(\bf{x}(t_1)) - V(\bf{x}(t_2)) .\] depends only on the end-points, not on the trajectory $C$, i.e. for a closed path $C$, \[ \oint_C \bf{F} \cdot \dd \bf{x} = 0 \] A result from vector calculus states that this can only hold if $\bf{F} = -\nabla V$. \end{proof} \myskip Forces of this form are called \emph{conservative}. \begin{note*} $\bf{F} = -\nabla V \iff \nabla \times \bf{F} = 0$. \end{note*} \subsubsection*{Central Forces} A special class of force has potential $V(r)$, with $r = |\bf{x}|$ \[ \implies \bf{F}(r) = -\nabla V = -\dfrac{v}{r} \hat{\bf{r}} .\] i.e. points towards/away from the origin. These are \emph{central forces}. Central forces have an additional conserved quantity called \emph{angular momentum}. \[ \bf{L} = m \bf{x} \times \dot{\bf{x}} .\] Note that it depends on choice of origin. \[ \dfrac{\bf{L}}{t} = m \dot{\bf{x}} \times \dot{\bf{x}} + m \bf{x} \times \ddot{\bf{x}} = \bf{x} \times \bf{F} = 0 \] because $\bf{F} = \bf{x}$. For non-central forces, \[ \dfrac{\bf{L}}{t} = \bf{\tau} \] where $\bf{\tau} = \bf{x} \times \bf{F}$ is the \emph{torque}. \subsection{Gravity} Gravity is a conservative force. Fix a particle of mass $M$ at the origin. A particle of mass $m$ in its presence experiences a potential energy. \[ V(r) = -\frac{GMm}{r} \] where $G = 6.67 \times 10^{-11} \mathsf{m^3kg^{-1}s^{-2}}$ is Newton's constant. \[ \implies \bf{F} = -\nabla V = -\frac{GMm}{r^2} \hat{\bf{r}} \] It's common to define the \emph{gravitational field} $\phi(r) = -\frac{GM}{r}$, a property of the mass $M$ alone. \\ The gravitational field due to many fixed masses $M_i$ at position $\bf{r}_i$ is \[ \phi(\bf{r}) = -G \sum_i \left( \frac{M_i}{|\bf{r} - \bf{r}_i} \right) .\] The potential energy of mass $m$ is then $V = m\phi$. \begin{claim*} The external gravitational field of a spherically symmetric object of mass $M$ is \[ \phi(r) = -\frac{GM}{r} \] i.e. as if all the mass were at $r = 0$. \end{claim*} \begin{proof} Volume integral (see vector calculus course). \end{proof} \subsubsection*{Some 1d Problems} Sit on a spherical planet of radius $R$. If one only moves a distance $x \ll R$ above the surface, then \[ V(R + z) = -\frac{GMm}{R + z} = -\frac{GMm}{R} \left(1 - \frac{z}{R} + \cdots \right) \approx \text{constant} + \frac{GM}{R^2} m \cdot z \] \[ V \approx \text{constant} + mgz \] How fast must we jump to escape the gravitational pull of the earth? \begin{center} \includegraphics[width=0.6\linewidth] {images/3a2fd1a8829211ec.png} \end{center}