% vim: tw=50 % 15/03/2022 10AM \subsubsection*{Massless Particles} Proper time $\tau$ is only defined for massive particles that move slowed than $c$. But from last lecture, have \[ \bf{P} \cdot \bf{P} = \frac{E^2}{c^2} - \bf{p}^2 = \bf{p}^2 - \bf{p}^2 = 0 \] i.e. the 4-momentum is null - and lies on a light ray i.e. $\exists$ a maximum speed for massless particles (and it happens that photons - particles of light - are massless). (Gravitons are the other ones). \myskip For $m = 0$, $E^2 = \bf{p}^2 c^2$ so \[ \bf{P} = \frac{E}{c} \begin{pmatrix} 1 \\ \hat{\bf{p}} \end{pmatrix} \] ($\omega$ is angular frequency, and $\lambda$ is wavelength of light) To get an expression for the energy, we take it from quantum mechanics \[ E = \hbar \omega = \frac{2\phi\hbar c}{\lambda} \] $h = \text{Planck's constant} = 6.6 \times 10^{-340} \mathsf{m^2 kgs^{-1}}$. ($\hbar := \frac{h}{2\pi}$) \subsubsection*{Newton's Laws of Motion} In special relativity, N2 becomes \[ \dfrac{\bf{P}^\mu}{\tau} = F^\mu \] where $F^\mu$ is a 4-vector force, related to the 3-vector force $\bf{f}$ by \[ F^\mu = \begin{pmatrix} F^0 \\ \gamma \bf{f}^\top \end{pmatrix} \] so \[ \dfrac{\bf{p}}{t} = \dfrac{\tau}{t} \dfrac{\bf{p}}{\tau} = \frac{1}{\gamma} \dfrac{\bf{p}}{\tau} = \bf{f} \] (agrees with N2). The time component is related to the power \[ F^0 = \dfrac{\bf{P}^0}{\tau} = \frac{\gamma}{c} \dfrac{E}{t} \] \subsection{Particle Physics} We'll discuss problems which just need conservation of 4-momentum \[ \bf{P} = \begin{pmatrix} \frac{E}{c} \\ \bf{p} \end{pmatrix} \] Recall \[ \bf{P} \cdot \bf{P} = m^2 c^2 \] and $E^2 = \bf{p}^2 c^2 + m^2 c^4$. \myskip Often make problems easy by choosing a handy inertial frame - almost always this is the centre of mass (should be ``centre of momentum'', $\sum_i \bf{p}_i = 0$). Sometimes, $\exists$ a $\bf{P}^\mu$ we don't know. Can use conservation of 4-momentum, re-write equations as $\bf{P}^\mu = \cdots$ and then form $\bf{P} \cdot \bf{P} = \cdots$. \subsubsection*{Particle Decay} A particle of mass $m$, decays to particles of mass $m_2$ and $m_3$. \begin{align*} \bf{P}_1 &= \bf{P}_2 + \bf{P}_3 &&\text{(4-momentum conserved)} \\ \implies E_1 &= E_2 + E_3 &&\text{zeroth component} \\ \bf{p}_1 &= \bf{p}_2 + \bf{p}_3 &&\text{first, second, third components} \end{align*} In the rest-frame of decaying particle, \[ E_1 = m_1 c^2 = \sqrt{\bf{p}^2 c^2 + m_2^2 c^4} + \sqrt{\bf{p}_3^2 c^2 + m_3^2 c^4} \ge m_2 c^2 + m_3 c^2 \] i.e. decay only happens if $m_1 \ge m_2 + m_3$. \begin{example*} $h \to \gamma \gamma$ (higgs boson decaying into 2 photons). In $h$ rest-frame, \[ \bf{P}_h = \begin{pmatrix} m_h c \\ \bf{0}^\top \end{pmatrix} ; \qquad \bf{P}_h = \bf{P}_\gamma + \bf{P}_{\gamma'} \] 4-momentum conserved (first, second, third components): \[ \bf{p}_\gamma = -\bf{p}_{\gamma'} \] \[ \implies E_\gamma = E_{\gamma'} = \frac{m_h c^2}{2} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/7759c43ec70d11ec.png} \end{center} \[ (\bf{P}_\gamma + \bf{P}_{\gamma'}) \cdot (\bf{P}_\gamma + \bf{P}_{\gamma'}) = m_h^2 \] \end{example*} \subsubsection*{Colliders} Collide 2 particles of mass $m$: \[ \ub{\bf{P}_1 + \bf{P}_2}_{\text{incoming}} = \ub{\bf{P}_3 + \bf{P}_4}_{\text{outgoing}} \] In the centre of mass frame, $\bf{p}_1 + \bf{p}_2 = 0$. Pick axes so that \[ \bf{P}_1^\mu = (mc \gamma_v, mv \gamma_v, 0, 0) \] \[ \bf{P}_2^\mu = (mc \gamma_v, -mv \gamma_v, 0, 0) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/255fd88ec70e11ec.png} \end{center} After collision, particles must still have equal and opposite 3-momenta. Choose axes such that \[ \bf{P}_3^\mu = (mc \gamma_v, mv \gamma_v \cos\theta, mv \gamma_v \sin\theta, 0) \] \[ \bf{P}_4^\mu = (mc \gamma_v, -mv \gamma_v \cos\theta, -mv \gamma_v \sin\theta, 0) \] Let's say that in the lab frame, one particle is at rest. Velocity addition formula implies that other particles has speed \[ u = \frac{2v}{1 + \frac{v^2}{c^2}} \] \subsubsection*{Particle Creation} Collide 2 particles of mass $m$ energetically enough to create an extra particle of mass $M$. 4-momentum conserved: \[ \bf{P}_1 + \bf{P}_2 = \bf{P}_3 + \bf{P}_4 + \bf{P}_5 \tag{\dag} \] \[ \bf{P}_1^2 = \bf{P}_2^2 = \bf{P}_3^2 = \bf{P}_4^2 = m^2 c^2 \] \[ \bf{P}_5^2 = M^2 c^2 \] Question: what is $v$? \\ Centre of mass frame \[ \bf{P}_1 = (\gamma mc, \gamma m \bf{v}) \] \[ \bf{P}_2 = (\gamma mc, -\gamma m \bf{v}) \] $(\dag) \cdot (\dag)$: \[ (\bf{P}_1 + \bf{P}_2)^2 := (\bf{P}_1 + \bf{P}_2) \cdot (\bf{P}_1 + \bf{P}_2) = (\bf{P}_3 + \bf{P}_4 + \bf{P}_5)^2 \tag{$*$} \] \begin{lemma*} If $\bf{P}^2 = m_1^2 c^2$ and $Q^2 = m_2^2 c^2$ then $\bf{P} \cdot Q \ge m_1 m_2 c^2$. \end{lemma*} \begin{proof} In the rest frame of $m$, \begin{align*} \bf{P} \cdot Q &= (m_1, c \bf{0}) \cdot \begin{pmatrix} \frac{E_2}{c} \\ |\bf{p}_2| \end{pmatrix} \\ &= m_1 E_2 \\ m_1 \sqrt{m_2^2 c^4 + \bf{p}^2 c^2} \\ &\ge m_1 m_2 c^2 \end{align*} \end{proof} \myskip Expand ($*$) and use lemma: \[ \bf{P}_1 + \bf{P}_2 = (\gamma mc, \bf{0}) \] so LHS is \begin{align*} 4 \gamma^2 m^2 c^2 &= \bf{P}_3^2 + \bf{P}_4^2 + \bf{P}_5^2 + 2(\bf{P}_3 \cdot \bf{P}_4 + \bf{P}_3 \cdot \bf{P}_5 + \bf{P}_4 \cdot \bf{P}_5) \\ &= 2m^2 c^2 + M^2 c^2 + 2(\bf{P}_3 \cdot \bf{P}_4 + \bf{P}_3 \cdot \bf{P}_5 + \bf{P}_4 \cdot \bf{P}_5) \\ &\ge 2m^2 c^2 + M^2 c^2 + 2(m^2 c^2 + mMc^2 + mMc^2) \\ \implies \Aboxed{\gamma &\ge 1 + \frac{M}{2m}} \end{align*} \begin{note*} Kinetic energy of incoming particle \[ T = \gamma mc^2 - mc^2 \ge \half Mc^2 \] \end{note*}