% vim: tw=50 % 12/03/2022 10AM \noindent $\tau$ provides a way to parametrise the world-line of a particle in a way that all inertial observers agree on. \\ In frame $S$, the wordline of any particle can be parametrised \[ \bf{x}(\tau), \qquad t(\tau) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/25a1cd00c59911ec.png} \end{center} Along a small segment of worldline \begin{align*} \dd \tau &= \sqrt{\dd t^2 - \frac{(\dd \bf{x})^2}{c^2}} \\ &= \dd t \sqrt{1 - \frac{\bf{u}^2}{c^2}} \end{align*} where $\bf{u} := \dfrac{\bf{x}}{t}$ \[ \implies \dfrac{t}{\tau} = \gamma_u \tag{$*$} \] with \[ \gamma_u := \frac{1}{\sqrt{1 - \frac{\bf{u}^2}{c^2}}} .\] The total time experienced by the particle along its worldline \[ T = \int \dd \tau \stackrel{(*)}{=} \int \frac{\dd t}{\gamma_u} \] \subsubsection*{4-velocity} The general trajectory of a particle traces out a 4-vector \[ X(\tau) = \begin{pmatrix} ct(\tau) \\ \bf{x}^\top (\tau) \end{pmatrix} .\] The \emph{4-velocity} is defined as \[ U = \dfrac{X}{\tau} = \begin{pmatrix} c \dfrac{t(\tau)}{\tau} \\ \left( \dfrac{\bf{x}(\tau)}{\tau} \right)^\top \end{pmatrix} = \dfrac{t}{\tau} \begin{pmatrix} c \\ \bf{u}^\top \end{pmatrix} \stackrel{(*)}{=} \gamma_u \begin{pmatrix} c \\ \bf{u}^\top \end{pmatrix} \] Because $\dd \tau$ is invariant for inertial observers, we easily write down the 4-velocity in other frames: If $S'$ is related to $S$ by $X' = \Lambda X$ then the 4-velocity of the particle in $S'$ is \[ U' = \Lambda U \] (take $\dfrac{}{\tau}$). \begin{note*} Wouldn't work for $\dfrac{X}{t}$ since both $X$ \emph{and} $t$ transform under Lorentz boosts. \end{note*} \noindent We know that \[ U \cdot U = U' \cdot U' \] i.e. is the same for all observers. In the rest-frame of the particle, \[ U = \begin{pmatrix} c \\ \bf{0}^\top \end{pmatrix} \implies U \cdot U = c^2 .\] i.e. 4-velocities have 3 independent parameters. \begin{note*} In general, a \emph{4-vector} is a 4-component vector that transforms as $A \to \Lambda A$ under Lorentz transformations. \end{note*} \subsubsection*{Addition of velocities at an angle} In frame $S$, a particle travels with 4-velocity \[ U = \gamma_u \begin{pmatrix} c \\ u \cos \alpha \\ u \sin \alpha \\ 0 \end{pmatrix} \] Frame $S'$ moves with velocity $v$ in the $x$-direction (with respect to $S$). \begin{align*} \implies U' &= \Lambda [v] U \\ &= \begin{pmatrix} \gamma & -\frac{\gamma v}{c} & 0 & 0 \\ -\frac{\gamma v}{c} & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma_u c \\ U \gamma_u \cos \alpha \\ U \gamma_u \sin \alpha \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} c \gamma \gamma_u \left( 1 - \frac{uv}{c^2} \cos\alpha \right) \\ \gamma \gamma_u (u \cos\alpha - v) \\ u \gamma_u \sin\alpha \\ 0 \end{pmatrix} \\ &:= \begin{pmatrix} \gamma_{u'} c \\ u' \gamma_{u'} \cos\alpha' \\ u' \gamma_{u'} \sin\alpha' \\ 0 \end{pmatrix} \end{align*} Divide first component by zeroth on each side: \[ u' \cos \alpha' = \frac{u\cos\alpha - v}{1 - \frac{uv}{c^2} \cos\alpha} \] Divide second component by first: \[ \tan\alpha' = \frac{u \sin\alpha}{\gamma(u \cos\alpha - v)} \] \subsubsection*{4-momentum} The \emph{4-momentum} of a particle of mass $m$ is \[ \bf{P} = mU = \begin{pmatrix} mc \gamma \\ m \gamma \bf{u}^\top \end{pmatrix} \] \[ \gamma = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}} \] where $m$ is the \emph{rest-mass}. In relativity, 4-momentum is conserved. Spatial components give the 3-momenta $\bf{p} = m\gamma \bf{u}$. \begin{note*} As $|\bf{u}| \to c$, $|\bf{p}| \to \infty$. \end{note*} \noindent What's the interpretation of $\bf{P}^0 = \gamma mc$? Taylor expand for $|\bf{u}| \ll c$: \[ \bf{P}^0 = \frac{mc}{\sqrt{1 - \frac{\bf{u}^2}{c^2}}} = \frac{1}{c} \left( mc^2 + \half m \bf{u}^2 + \cdots \right) \] suggesting we should interpret $\bf{P}$ as \[ \bf{P} = \begin{pmatrix} \frac{E}{c} \\ \bf{p}^\top \end{pmatrix} \] where $E = \text{energy}$. (Noether's theorem). \\ We learn that both mass and kinetic energy contribute to the energy $\boxed{E = \gamma mc^2}$. \begin{note*} As $|\bf{u}| \to c$, $E \to \infty$, i.e. can't get particles to exceed the speed of light. \end{note*} \noindent For a stationary particle, $\gamma = 1$ so $E = mc^2$ $\to$ mass is a form of energy. \myskip We can also write the energy in terms of momentum since \[ \bf{P} \cdot \bf{P} = \frac{E^2}{c^2} - \bf{p}^2 ,\] since same in all frames, calculate in rest frame, $\bf{p} = 0$, $E = mc^2$. \[ \implies \bf{P} \cdot \bf{P} = \frac{m^2c^4}{c^2} \implies \boxed{E^2 = \bf{p}^2 c^2 + m^2 c^4} \] In Newtonian physics, mass and energy are conserved separately. In relativity, mass is just another form of energy and we can convert kinetic energy $\leftrightarrow$ mass. \begin{note*} $E$ and $\bf{p}$ are frame-dependent! Lorentz transform: \[ U \to \Lambda U \] \[ U \cdot U = U^\top \eta U \stackrel{\text{LT}}{\to} U^\top \Lambda^\top \eta \Lambda U = u^\top \eta U = U \cdot U \] \end{note*}