% vim: tw=50 % 08/03/2022 11AM \myskip Things change when Luke turns around. Suppose instead that Luke meets his friend Han who's just leaving $P$ towards Leia. On this journey, Han thinks Leia ages by $\frac{T}{\gamma^2}$. \begin{center} \includegraphics[width=0.6\linewidth] {images/ac4c18a4c59111ec.png} \end{center} But he thinks Leia is at point $Z$ when he leaves \[ \left( t = 2T - \frac{T}{\gamma^2} \right) \] The asymmetry arises (between Luke and Leia) when Luke turns around. At this point, he sees Leia age rapidly from $X \to Z$. \subsubsection*{Length Contraction} A rod of length $L'$ is stationary in frame $S'$. \myskip Question: What is its length in frame $S$? \\ In $S'$ \begin{center} \includegraphics[width=0.6\linewidth] {images/357f7ca6c59211ec.png} \end{center} The length of the rod is the distance between the two end points \emph{at equal times}. In $S$ \begin{center} \includegraphics[width=0.6\linewidth] {images/57ccc78cc59211ec.png} \end{center} (Lorentz transforms $x' = f(x, t)$, $t' = g(x, t)$, Inverse transformations $x = f'(x', t')$, $t = g'(x', t')$). $P_2$ is at $t = \frac{\gamma v L'}{c^2}$ and $x = \gamma L'$. Need to measure $L$ at equal time in $S$. Follow $P_2$ back to $Q$, $Q$ sits at \[ x = \gamma L' - vt = \gamma L' - \frac{\gamma v^2 L'}{c^2} = \frac{L'}{\gamma} \] The length of the rod in $S$ is $L = \frac{L'}{\gamma}$, i.e. moving rods are shorter. \begin{example*} Consider a barn of length $L$, ladder of length $2L$. Question: does it fit? \begin{itemize} \item From perspective of barn, ladder length is $\frac{2L}{\gamma}$, so if $\gamma \ge 2$, ladder firs. \item From perspective of ladder holder, barn length $= \frac{L}{\gamma}$, so doesn't fit. \end{itemize} So whether ladder fits or not depends on the frame. (So this is a matter of simultaneity: events about the front and back being in the barn). \end{example*} \subsubsection*{Addition of Velocities} A particle moves with velocity $u'$ in $S'$, which moves with respect to $S$. What is the velocity $\bf{u}$ in $S$? \myskip The worldline of the particle in $S'$ \[ x' = u't' \tag{$*$} \] In $S$, \[ u = \frac{x}{t} = \frac{\gamma \left( x' + vt' \right) }{\gamma \left( t' + \frac{vx'}{c^2} \right)} \] (inverse Lorentz transformations) \[ (*) \implies \boxed{u = \frac{u' + v}{1 + \frac{u'v}{c^2}}} \] \begin{itemize} \item $u'v \ll c^2 \implies$ Galilean addition of velocities \item $u' = c \implies u = c$, consistent with speed of light being constant in any frame. \end{itemize} \subsection{Geometry of Spacetime} There is a quantity that all observer agree on. Consider two events $P_1$ with coordinates $(ct_1, x_1)$, $P_2$ with coordinates $(ct_2, x_2)$. \[ \Delta t := t_1 - t_2 \qquad \Delta x := x_1 - x_2 \] The \emph{invariant interval} is defined as \[ \Delta s^2 = c^2 (\Delta t)^2 - (\Delta x)^2 \] Claim: All observers agree on value of $\Delta s^2$: have \begin{align*} \Delta s^2 &= \gamma^2 \left( c\Delta t' + \frac{v\Delta x'}{c} \right)^2 - \gamma^2 (\Delta x' + v \Delta t')^2 &&\text{inverse Lorentz transforms} \\ &= \gamma^2 (c^2 - v^2) \Delta t'^2 - \gamma^2 \left( 1 - \frac{v^2}{c^2} \right) \Delta x'^2 \\ &= c^2 \Delta t'^2 - \Delta x'^2 \end{align*} In three spatial dimensions, the invariant intervals is \[ \Delta s^2 = c^2 \Delta t^2 - \Delta x^2 - \Delta y^2 - \Delta z^2 \] Spacetime is parametrised by 4 numbers, i.e. $\RR^4$. When endowed with the (non-positive definite) measure of distance $\Delta s^2$, it is called \emph{Minkowski space}. We say it has dimension $1 + 3$, to stress the difference with Euclidean space. \begin{itemize} \item Events with $\Delta s^2 > 0$ are \emph{timlike separated}: \begin{center} \includegraphics[width=0.6\linewidth] {images/f17c9beac59311ec.png} \end{center} \item Events with $\Delta s^2 < 0$ are \emph{spacelike separated}: \begin{center} \includegraphics[width=0.6\linewidth] {images/fc8f8a88c59311ec.png} \end{center} \item Events with $\Delta s^2 = 0$ are \emph{lightlike-} or \emph{null-} separated: \begin{center} \includegraphics[width=0.6\linewidth] {images/0bc55ef6c59411ec.png} \end{center} \begin{note*} $\Delta s^2 = 0$ doesn't mean same point. \end{note*} \end{itemize} \subsubsection*{The Lorentz Group} \begin{note*} 3D rotations \begin{center} \includegraphics[width=0.6\linewidth] {images/63a36a0ac59411ec.png} \end{center} distance of $H$ to origin \[ S_{\text{Euclidean}}^2 = x^2 + y^2 + z^2 \] In a rotated frame, \[ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = R \begin{pmatrix} x \\ y \\ z \end{pmatrix} \] $3 \times 3$ rotation matrix such that $R^\top R = I_{3 \times 3}$. \[ S_{\text{Euclidean}}^2 = x'^2 + y'^2 + z'^2 \] \end{note*} \noindent It's best to think of $\Delta s^2$ as primary object in Minkowsky space. We'll use this now to redefine Lorentz transformation. \myskip The coordinates of an event $P$ in frame $S$ can be written as a \emph{four-vector} $X$: \[ X^\mu = \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \] (we label the entries with $\mu = 0, 1, 2, 3$ respectively.) The invariant distance from the origin and $P$ can be written as an inner product \[ X \cdot X := X^\top \eta X \] where \[ \eta := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \] is the \emph{Minkowski metric}. \begin{note*} $X \cdot X := X^\top \eta X := X^\mu \eta_{\mu \nu} X^\nu$ by Einstein summation convention. \end{note*}