% vim: tw=50 % 26/02/2022 10AM \subsection{Coriolis Force} The Coriolis force is \[ \bf{F}_{\text{cor}} = -2m \bf{\omega} \times \bf{v} \] where \[ \bf{v} = \left( \dfrac{\bf{r}}{t} \right)_{S'} \] ($\bf{v} = 0$ for the water in the bucket). Let's ignore the centrifugal force for now. \begin{itemize} \item It's velocity dependent and independent of position. \item It's mathematically related to the Lorentz force for a constant magnetic field $\implies$ particles move in circles. \end{itemize} $\bf{\omega}$ is out of the page. \begin{center} \includegraphics[width=0.6\linewidth] {images/709008b49a2811ec.png} \end{center} $\implies$ a free particle moves in a clockwise direction. \begin{center} \includegraphics[width=0.6\linewidth] {images/9f212f789a2811ec.png} \end{center} This is a similar effect that leads to hurricanes. Suppose there's a low pressure region. Particles in the fluid move radially towards the low pressure and are deflected by the Coriolis force: \begin{center} \includegraphics[width=0.6\linewidth] {images/056755289a2911ec.png} \end{center} end result is that swirls in an anti-clockwise direction (opposite to a free particle). Hurricanes in the Northern hemisphere rotate in an anticlockwise direction. (Southern hemisphere - clockwise). \begin{note*} Our discussion assumed that particles move in a plane perpendicular to $\bf{\omega}$. This isn't true on the surface of the earth. \end{note*} For a particle travelling due North, the Coriolis force points East with size \[ |\bf{F}_{\text{cor}}| = 2mv \omega \sin\theta \] \begin{center} \includegraphics[width=0.6\linewidth] {images/6ad17efc9a2911ec.png} \end{center} For a particle travelling East, it's a little trickier: $\bf{F}_{\text{cir}}$ has a component pointing upward. Looking at the component tangent to Earth, \[ |\bf{F}_{\text{cor}} \cdot \hat{\bf{\theta}}| = 2mv \omega \sin\theta \] again. \begin{note*} $\theta = 0 \implies \bf{F}_{\text{cor}}$ and indeed, there are no hurricanes within about 500 miles of the equator. \end{note*} \begin{example*}[Balls and Tower] Climb up a tower of height $h$ and drop a ball. \\ \ul{Question}: Does it land in front or behind the tower? \\ \ul{Answer}: In front - a bit counter intuitive. \[ \ddot{\bf{r}} = \bf{g} - \bf{\omega} \times (\bf{\omega} \times \bf{r}) - 2\bf{\omega} \times \dot{\bf{r}} \approx \bf{g} - 2 \bf{\omega} \times \dot{\bf{r}} \tag{$*$} \] (we neglect $\bf{\omega} \times (\bf{\omega} \times \bf{r})$ because it is $O(\omega^2) + \text{very small}$, so it's fine after $\dot{\bf{r}}$ is above a certain value). Integrating once: \[ \implies \dot{\bf{r}} = \bf{g}t - 2\bf{\omega} \times (\bf{r} - \bf{r}_0) .\] ($\bf{r}_0$ is an integration constant - the initial position). Substitute into ($*$) to get: \[ \ddot{\bf{r}} = \bf{g} - 2\bf{\omega} \times \bf{g} t \] Now integrate twice: \[ \implies \bf{r} = \bf{r}_0 + \half gt^2 - \frac{1}{3} \bf{\omega} \times \bf{g} t^3 \] We'll look at this effect on the equator \begin{center} \includegraphics[width=0.6\linewidth] {images/69dafedc9a2a11ec.png} \end{center} \begin{align*} \bf{g} &= -g \bf{e}_3 \\ \bf{\omega} &= \omega \bf{e}_1 \\ \bf{r}_0 &= (R + h) \bf{e}_3 \\ \implies \bf{r} &= \left( R + h - \half gt^2 \right) \bf{e}_3 - \frac{1}{3} \omega gt^3 \bf{e}_2 \end{align*} $\bf{e}_2$ is Westerley but displacement is in the Easterley direction. Particle hits ground when $t^2 = \frac{2h}{g}$, as usual. \[ \implies \text{displacement } = \frac{1}{3} \omega g \left( \frac{2h}{g} \right)^{3/2} \text{ East} \] (ball drops in \emph{front} of tower). \begin{note*} This is really conservation of angular momentum. When dropped, $l = (R + h)^2 \omega$ so the speed close to the ground is $v$: \[ Rv = (R + h)^2 \omega \implies v = \frac{(R + h)^2}{R} \omega > R \omega = v_{\text{earth}} \] \end{note*} \end{example*} \subsubsection*{Brief Discussion of Foucault's Pendulum} A pendulum at the North pole stays aligned with its inertial force while the Earth rotates underneath. An observer on the earth sees the swing process throughout the day (see David Tong's notes for algebra) \[ \zeta := x + iy \qquad \zeta = e^{-i \omega t \sin\theta} \left( a \cos \sqrt{\frac{g}{l}} t + B \sin \sqrt{\frac{g}{l}} t \right) \] Pendulum rotates with period $\frac{1 \text{ day}}{\sin\theta}$. \subsubsection*{Larmor Precession} Consider a charged particle orbiting around a second, fixed particle, under the influence of the Coulomb force. Add this to a constant magnetic field $\bf{B}$. Equation of motion: \[ m\ddot{\bf{r}} = -\frac{k}{r^2} + q \dot{\bf{r}} \times \bf{B}; \qquad k = \frac{qQ}{4\pi \eps_0} \] In a rotating frame ($\dot{\bf{\omega}} = 0$): \begin{align*} m \left( \dfrac[2]{\bf{r}}{t} \right)_{S'} &= -\frac{k}{r^2} \hat{\bf{r}} + q \dot{\bf{r}} \times \bf{B} - 2m \bf{\omega} \left( \dfrac{\bf{r}}{t} \right)_{S'} - m(\bf{\omega} \times (\bf{\omega} \times \bf{r})) \\ &= -2m \bf{\omega} \left( \dfrac{\bf{r}}{t} \right)_{S'} - m (\bf{\omega} \times (\bf{\omega} \times \bf{r})) - \frac{k}{r^2} \hat{\bf{r}} + q \left[ \left( \dfrac{\bf{r}}{t} \right)_{S'} + \bf{\omega} \times \bf{r} \right] \times \bf{B} \end{align*} Pick $\bf{\omega}$ to cancel $\left( \dfrac{\bf{r}}{t} \right)_{S'}$ terms, i.e. $\bf{\omega} = -\frac{q \bf{B}}{2m}$ \[ \implies m \ddot{\bf{r}} = -\frac{k}{r^2} \hat{\bf{r}} + \frac{q^2}{4m} \bf{B} \times (\bf{B} \times \bf{r}) \] (when $B^2 \ll \frac{4mk}{q^2r^2}$ we can neglect the last term). We go back to solutions with elliptic motion. Transform back out of rotating frame to show that the ellipses precess with angular speed $\omega = \frac{qB}{2m}$, the Larmor frequency ($\half$ the cyclotron frequency).