% vim: tw=50 % 24/02/2022 10AM \[ \left( \dfrac[2]{\bf{r}}{t} \right)_S = \left( \dfrac{\bf{r}}{t} \right)_{S'} + 2\bf{\omega} \times \left( \dfrac{\bf{r}}{t} \right)_{S'} + \dot{\bf{\omega}} \times \bf{r} + \bf{\omega} \times (\bf{\omega} \times \bf{r}) \tag{$*$} \] \subsection{Newton's Laws in a Rotating Frame} In the inertial frame $S$, we have \[ \bf{F} = m \left( \dfrac[2]{\bf{r}}{t} \right)_S \] Then, from ($*$) in $S'$ we have \[ m \left( \dfrac[2]{\bf{r}}{t} \right)_{S'} = Fbf - 2m \bf{\omega} \times \left( \dfrac{\bf{r}}{t} \right)_{S'} - m \dot{\bf{\omega}} \times \bf{r} - m\bf{\omega} \times (\bf{\omega} \times \bf{r}) \] To explain the motion of the particle viewed from $S'$, we must include the extra terms on the RHS. They are called \emph{fictitious forces}. They are necessary to explain the seeming departure from uniform motion of a free particle due to the rotating frame. \begin{itemize} \item $2m \bf{\omega} \times \left( \dfrac{\bf{r}}{t} \right)_{S'}$ \emph{Coriolis force} \item $m \dot{\bf{\omega}} \times \bf{r}$ \emph{Euler force} \item $m \bf{\omega} \times (\bf{\omega} \times \bf{r})$ \emph{Centrifugal force} \end{itemize} The most familiar non-inertial frame is this room. Earth rotates once a day around N-S axis and once a year around the sun, which rotates around the galaxy. \\ $R_\text{earth} \approx 6000\mathsf{km}$, earth spins with an angular frequency of \[ \omega_{\text{rot}} = \frac{2\pi}{1\text{ day}} \approx 7 \times 10^{-5} \mathsf{s^{-1}} \] angular frequency of orbit: \[ \omega_{\text{orb}} = \frac{2\pi}{1\text{ year}} \approx 2 \times 10^{-7} \mathsf{s^{-1}} \] \begin{note*} \[ \frac{\omega_{\text{rot}}}{\omega_{\text{orb}}} \approx 365 = \frac{T_{\text{orb}}}{T_{\text{rot}}} \] \end{note*} \noindent Here, we won't consider the Euler force. \subsection{Centrifugal Force} \[ \bf{F}_{\text{cent}} = -m\bf{\omega} \times (\bf{\omega} \times \bf{r}) = -m (\bf{\omega} \cdot \bf{r}) \bf{\omega} + m\omega^2 \bf{r} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/3e440f2a99d011ec.png} \end{center} $\bf{\omega} \times \bf{r}$ points into the paper so $-\bf{\omega} \times (\bf{\omega} \times \bf{r})$ points away from the axis of rotation, as shown. \[ |\bf{F}_{\text{cent}}| = m\omega^2 r \cos\theta = m\omega^2 d \] $\bf{F}_{\text{cent}}$ doesn't depend on the velocity of the particle. In fact, it's a conservative force: \[ \bf{F}_{\text{cent}} = -\nabla V \qquad \text{with} \qquad V = -\frac{m}{2} |\bf{\omega} \times \bf{r}|^2 \] \subsubsection*{Example: Apparent Gravity} Suspend a piece of string from the ceiling. Centrifugal deflects the string (a bit) from pointing straight down to the centre of the earth. But by how much? \begin{center} \includegraphics[width=0.6\linewidth] {images/39acfebc99d111ec.png} \end{center} \ul{Question}: How bis is $\phi$? \\ The effective acceleration is due to the combination of gravity and the centrifugal force \[ \bf{g}_{\text{eff}} = \bf{g} - \bf{\omega} \times (\bf{\omega} \times \bf{r}) \] We resolve the central force \begin{align*} \bf{F}_{\text{cent}} &= |\bf{F}| \cos\theta \hat{\bf{r}} - |\bf{F}| \sin\theta \hat{\bf{\theta}} \\ &= m\omega^2 r \cos^2\theta \hat{\bf{r}} - m\omega^2 r \cos\theta \sin\theta \hat{\bf{\theta}} \end{align*} (Note at the north pole, $\theta = \frac{\pi}{2}$ and $F_{\text{cent}} = 0$, as expected). Giving the effective acceleration: \begin{align*} \bf{g}_{\text{eff}} &= -g \hat{\bf{r}} - \bf{\omega} \times (\bf{\omega} \times \bf{r}) \\ &= (-g + \omega^2 R \cos^2 \theta) \hat{\bf{r}} - \omega^2 R \cos\theta \sin\theta \end{align*} We can also resolve tension in the string \[ \bf{T} = T \cos\phi \hat{\bf{r}} + T\sin\phi \hat{\bf{\theta}} \] which balances the $m \bf{g}_{\text{eff}}$ force. \[ \bf{T} + m \bf{g}_{\text{eff}} = 0 \implies \tan\phi = \frac{\omega^2 R\cos\theta \sin \theta}{g - \omega^2 R\cos^2\theta} \] (Note $\omega^2 R = 3 \times 10^{-2} \mathsf{ms^{-2}}$). $\phi$ is (approximately) maximised at \[ \dfrac{}{\theta} (\cos\theta \sin\theta) = 0 \] i.e. $\theta \approx 45^\circ$. \[ \tan\phi \approx \frac{\omega^2 R}{q} \approx o(10^{-3}) \] so very small. At the equator, $\theta = 0$, $\phi = 0$. But gravity is weaker there: \[ \bf{g}_{\text{eff}} \mid_{\text{equator}} = g - \omega^2 R \implies g - g_{\text{eff}} = 10^{-2} \mathsf{ms^{-2}} \] \begin{example*}[Rotating Water Bucket] Gravity acts down on water and centrifugal force pushes it to the side. \begin{center} \includegraphics[width=0.6\linewidth] {images/09f29d2a99d211ec.png} \end{center} \ul{Question}: What's the shape of the surface? \\ Assume water spins with bucket. Consider a water molecule, mass $m$ on the surface. It's potential energy is \[ V = mgz - \half m \omega^2 r^2 \] If the water molecule could change its energy by moving along the surface, then it would. But we're looking for the equilibrium shape of surface i.e. each point on it has equal potential energy. Put $V = \text{ constant}$: \[ z = \frac{\omega^2}{2g}r^2 + \text{constant} \] i.e. a parabola! \end{example*}