% vim: tw=50 % 17/02/2022 10AM \[ I = \sum_{i = 1}^N m_i d_i^2 \] moment of inertia. \myskip The angular momentum of the body is \[ L = \sum_i m_i \bf{x}_i \times \dot{\bf{x}}_i = \sum_i m_i \bf{x}_i \times (\bf{\omega} \times \bf{x}_i) \] For $\bf{\omega} = \omega \hat{\bf{n}}$ ($\hat{\bf{n}}$ is unit vector), \begin{align*} \bf{L} \cdot \hat{\bf{n}} &= \omega \sum_i m_I (\bf{x}_i \times (\hat{\bf{n}} \times \bf{x}_i)) \cdot \hat{\bf{n}} \\ &= \omega \sum_i m_i |\bf{x}_i \times \hat{\bf{n}}|^2 \end{align*} the identity can be proven using components: \begin{align*} \bf{x} \times (\hat{\bf{n}} \times \bf{x}) \cdot \hat{\bf{n}} &= \eps_{lkm} x_l \eps{ijk} \hat{n}_i x_j n_k \\ &= (\eps_{mlk} \hat{n}_m x_l)(\eps_{ijk} \hat{n}_i x_j) \\ &= (\bf{x} \times \hat{\bf{n}}) \cdot (\bf{x} \times \hat{\bf{n}}) \end{align*} but $d_i = |\bf{x}_i \times \hat{\bf{n}}|$, so \[ \bf{L} \cdot \hat{\bf{n}} = I \omega \] Recall that $\dot{\bf{L}} = \bf{\tau}$, the torque. If $\bf{\tau} = \tau \hat{\bf{n}}$, then $\tau = I \dot{\omega}$. \subsubsection*{Calculating the Moment of Inertia} We often treat rigid bodies as continuous , with density distribution $\rho(\bf{x})$ instead of discrete masses $m_i$. Then, the mass is \[ M = \int \rho(\bf{x}) \dd V \] and the moment of inertia is \[ I = \int \rho(\bf{x}) x_\perp^2 \dd V \] where $x_\perp = x \sin \phi$ is the perpendicular distance to the axis of rotation. \subsubsection*{Examples} \begin{itemize} \item Circular hoop, axis of rotation through centre and perpendicular to the hoop. Mass $M$, radius $a$. \begin{center} \includegraphics[width=0.6\linewidth] {images/f0b5c8d28fdb11ec.png} \end{center} \[ I = \int \rho a^2 \dd V = a^2 \int \rho(\bf{x}) \dd V = a^2 M \] \item Disc radius $a$. \begin{enumerate}[(a)] \item axis through centre, perpendicular to plane of disc (spinning plate). \begin{center} \includegraphics[width=0.6\linewidth] {images/132d747c8fdd11ec.png} \end{center} \[ M = \pi a^2 \rho \] (from now on, put $\rho(\bf{x}) = \rho$, a constant within the body). \[ I = \int_0^a r \dd r \int_0^{2\pi} \dd \theta \rho r^2 = \half M a^2 \] \item axis of rotation through centre, in the plane of the disc (coin flip). \begin{center} \includegraphics[width=0.6\linewidth] {images/237c1b088fdd11ec.png} \end{center} \[ I = \int_0^a r \dd r \int_0^{2\pi} \dd \theta \rho(r \sin\theta)^2 = \frac{1}{4} M a^2 \] \end{enumerate} \begin{definition*} 2 dimensional objects such as the disc are called \emph{laminas}. (a) and (b) illustrate a general fact about laminas. If we take the $z$-axis perpendicular to the lamina, we obtain the\dots \end{definition*} \begin{theorem*}[Perpendicular Axis Theorem] Consider a 2 dimensional object lying in the $xy$-plane. \begin{center} \includegraphics[width=0.6\linewidth] {images/75fbf9488fdd11ec.png} \end{center} \[ I_x = \int \rho y^2 \dd A \] \[ I_y = \int \rho x^2 \dd A \] while \[ I_z = \int \rho r^2 \dd A = \int \rho (x^2 + y^2) \dd A \] hence \[ \boxed{I_z = I_x + I_y} \] so for example for a disc, by symmetry $I_x = I_y$, so $I_z = 2I_x$, which is consistent with the previous computations. \end{theorem*} \item A sphere, radius $a$, mass $M = \frac{4}{3} \pi \rho a^3$. Axis of rotation through centre \begin{center} \includegraphics[width=0.6\linewidth] {images/084978c08fde11ec.png} \end{center} spherical polar coordinates with $\theta = 0$ pointing along axis. $\theta \in [0, \pi)$ and $\phi \in [0, 2\pi)$. \begin{align*} I &= \int_0^a r^2 \dd r \int_0^\pi \sin \theta \dd \theta \int_0^{2\pi} \dd \phi \rho \frac{(r\sin\theta)^2}{x_\perp^2} \\ &= \frac{8}{15} \pi \rho a^5 \\ &= \frac{2}{5} Ma^2 \end{align*} (note that all the examples have been consistent with dimensional analysis, $[I] = [M][L]^2$) \item disc again about an axis perpendicular to disc, passing through a point on circumference. \begin{center} \includegraphics[width=0.6\linewidth] {images/01d75b328fdf11ec.png} \end{center} \[ d^2 = (\bf{r} - \bf{a})^2 = r^2 + a^2 - 2ar \cos\theta \] \begin{align*} I &= \rho \int_0^a r \dd r \int_0^{2\pi} \dd \theta (r^2 + a^2 - 2ar \cos\theta) \\ &= \frac{3}{2} \pi \rho a^2 \\ &= \frac{3}{2} Ma^2 \end{align*} We could have done this quickly using the\dots \begin{theorem*}[Parallel Axis Theorem] A rigid body has mass $M$ and moment of inertia $I_{\text{CoM}}$ about an axis which passes through the centre of mass. Let $I$ be the moment of inertia about a parallel axis that lies a distance $h$ away. Then \[ \hat{\bf{n}} I = I_{\text{CoM}} + M h^2 .\] \end{theorem*} \begin{proof} Let $\bf{r}_i = \bf{R} + \bf{y}_i$ where $\sum_i m_i \bf{y}_i = 0$. \begin{center} \includegraphics[width=0.6\linewidth] {images/12cd3ece8fe011ec.png} \end{center} Then \begin{align*} I &= \sum_i m_I (\hat{\bf{n}} \times \bf{r}_i) \cdot (\hat{\bf{n}} \times \bf{r}_i) \\ &= \sum_i m_i (\hat{\bf{n}} \times (\bf{R} + \bf{y}_i)) \cdot (\hat{\bf{n}} \times (\bf{R} + \bf{y}_i)) \\ &= \sum_i m_i [\ub{(\hat{\bf{n}} \times \bf{y}_i) \cdot (\hat{\bf{n}} \times \bf{y}_i)} _{d_i^2} + \ub{2(\hat{\bf{n}} \times \bf{y}_i) \cdot (\hat{\bf{n}} \times \bf{R})} _{\propto \sum_i m_i y_i = 0} + \ub{(\hat{\bf{n}} \times \bf{R}) \cdot (\hat{\bf{n}} \times \bf{R})}_{h^2}] \\ &= I_{\text{CoM}} + Mh^2 \end{align*} \end{proof} \begin{note*} \[ I = I_{\text{CoM}} + Ma^2 = \frac{3}{2} Ma^2 \] \end{note*} \end{itemize}