% vim: tw=50 % 15/02/2022 10AM \subsubsection*{Variable Mass Problem} N2 really is $\bf{F} = \dot{\bf{p}}$ where $p = m \dot{\bf{x}}$ is momentum. This coincides with the more familiar $\bf{F} = m \ddot{\bf{x}}$ only when $m$ doesn't change with $t$, for example where it \emph{does}: \emph{Rockets}. \myskip A rocket moves in a straight line with velocity $\bf{v}(t)$. The mass of the rocket $m(t)$ changes with time because it propels itself forward by spitting fuel out behind. \\ Suppose the fuel is emitted at speed $u$ relative to the rocket. \\ \textbf{Question}: what is $v(t)$? \\ analysis \begin{center} \includegraphics[width=0.6\linewidth] {images/a59e4b6c8f4011ec.png} \end{center} momentum conserved (later) \[ p(t + \delta t) = p_{\text{rocket}}(t + \delta t) + p_{\text{fuel}}(t + \delta t) \] \begin{align*} p_{\text{rocket}} (t + \delta t) &= m(t + \delta t) v(t + \delta t) \\ &= \left( m(T) + \delta t \dfrac{m}{t} \right) \left( v(t) + \delta t \dfrac{v}{t} \right) + O(\delta t^2) \\ &= m(t)v(t) + \delta t \left( m \dfrac{v}{t} + v \dfrac{m}{t} \right) + O(\delta t^2) \\ p_{\text{fuel}} &= [m(t) - m(t + \delta t)][v(t + \delta t) - u] \\ &= -\delta \dfrac{m}{t}[v(t) - u] + O(\delta t^2) \end{align*} substitute in \[ p(t + \delta t) = p(t) + \left( m \dfrac{v}{t} + u \dfrac{m}{t} \right) \delta t + O(\delta t^2) \] N2: \[ \lim_{\delta t \to 0} \frac{p(t + \delta t) - p(t)}{\delta t} = \boxed{F = m(t) \dfrac{v}{t} + u \dfrac{m}{t}} \] (the boxed part is Tsiolkovsky rocket equation (1903)). For example rocket in deep space (i.e. $F = 0$) Here, the Tsiolkovsky equation becomes \[ \dfrac{v}{t} = -\frac{u}{m(t)} \dfrac{m}{t} \] integrate \[ \implies v(t) = v_0 + u \ln \left( \frac{m_0}{m(t)} \right) \] where the rocket (and fuel inside) has mass $m_0$ when its speed is $v_0$. \begin{note*} burning fuel only increases speed logarithmically! \end{note*} \noindent We shall assume that the fuel is burnt at a constant rate: \[ \dfrac{m}{t} = -\alpha \implies m(t) = m_0 - \alpha t \] \begin{note*} $\alpha > 0 \implies \dfrac{m}{t} < 0$. \end{note*} \noindent sub in: \[ v(t) = v_0 - u \ln \left( 1 - \frac{\alpha t}{m_0} \right) \] \begin{note*} Only makes sense for $t < \frac{m_0}{\alpha}$, since at $t = \frac{m_0}{\alpha}$, all of the mass in the rocket is burnt, including the rocket ($m = 0$). Assuming this, integrate once more to yield the distance travelled: \[ x = v_0 t + \frac{um_0}{\alpha} \left[ \left( 1 - \frac{\alpha t}{m_0} \right) \ln \left( 1 - \frac{\alpha t}{m_0} \right) + \frac{\alpha t}{m_0} \right] .\] \end{note*} \newpage \section{Rigid Bodies} A \emph{rigid body} is an extended object comprised of $N$ particles that are constrained so that the relative distance between any two, $|\bf{x}_i - \bf{x}_j|$, is fixed. \\ A rigid body can undergo two types of motion: \begin{itemize} \item its centre of mass can move \item it can rotate \end{itemize} We'll begin with rotations of rigid bodies. \subsection{Angular Velocity} Consider a single particle rotating in a circle around the $z$-axis. \begin{center} \includegraphics[width=0.6\linewidth] {images/d0452abe8f4211ec.png} \end{center} The position is \[ \bf{x} = (d \cos \theta, d \sin\theta, z) \] \[ \implies \dot{\bf{x}} = (-\dot{\theta} d \sin\theta, \dot{\theta} d \cos\theta, 0) \] We can write $\dot{\bf{x}}$ by introducing a new vector \[ \bf{\omega} = \dot{\theta} \hat{\bf{z}} \qquad \text{and} \qquad \dot{\bf{x}} = \bf{\omega} \times \bf{x} \] we call $\bf{\omega}$ the \emph{angular velocity}. In general, we write \[ \bf{\omega} = \omega \hat{\bf{n}} \] where $\omega$ is the angular speed, $|\dot{\theta}|$ and $\hat{\bf{n}}$ is the unit vector in direction of motion in the right-handed sense. \begin{center} \includegraphics[width=0.6\linewidth] {images/ed17415e8f4211ec.png} \end{center} (curl fingers of right hand in direction of motion and the thumb points at $\hat{\bf{n}}$) \\ The speed of the particle is $v = |\dot{\bf{x}}| = \omega d$ where $d = |\hat{\bf{n}} \times \bf{x}| = |\bf{x}| \sin\phi$ is the perpendicular distance to the axis of rotation. The kinetic energy of the particle is \begin{align*} T &= \half m \dot{\bf{x}}^2 \\ &= \half m (\bf{\omega} \times \bf{x}) \cdot (\bf{\omega} \times \bf{x}) \\ &= \half m d^2 \omega^2 \end{align*} \subsubsection*{Moment of Inertia} For a rigid body, all $N$ particles rotate with the same angular velocity, so \[ \dot{\bf{x}}_i = \bf{\omega} \times \bf{x}_i \qquad i = 1, \dots, N \] This ensures that \begin{align*} \dfrac{}{t} (\bf{x}_i - \bf{x}_j)^2 &= 2 (\dot{\bf{x}}_i - \dot{\bf{x}}_j) \cdot (\bf{x}_i - \bf{x}_j) \\ &= 2[\bf{\omega} \times (\bf{x}_i - \bf{x}_j)] \cdot (\bf{x}_i - \bf{x}_j) \\ &= 0 \end{align*} The kinetic energy is \[ T = \half \sum_i m_i \dot{\bf{x}}_i \cdot \dot{\bf{x}}_i := \half \bf{T} \omega^2 \] where \[ \bf{T} := \sum_{i = 1}^N m_i d_i^2 \] is the \emph{moment of inertia} of the body.