% vim: tw=50 % 12/02/2022 10AM \subsubsection*{Conservation of Angular Momentum} Total angular momentum \[ \bf{L} = \sum_i \bf{x}_i \times \bf{p}_i \] \begin{align*} \implies \dfrac{\bf{L}}{t} &= \sum_i \bf{x}_i \times \dot{\bf{p}}_i \\ &= \sum_i \bf{x}_i \times \left( \bf{F}_i^{\text{ext}} + \sum_{j \neq i} \bf{F}_{ij} \right) \\ &= \bf{\tau} + \sum_i \sum_{j \neq i} \bf{x}_i \times \bf{F}_{ij} \end{align*} where \[ \bf{\tau} := \sum_i \bf{x}_i \times \bf{F}_i^{\text{ext}} \] is the \emph{total external torque}. \\ We write the second term as \begin{align*} \sum_i \sum_{j \neq i} \bf{x}_i \times \bf{F}_{ij} &= \sum_{i < j} \bf{x}_i \times \bf{F}_{ij} + \sum_{j < i} \bf{x}_i \times \bf{F}_{ij} \\ &= \sum_{i < j} \bf{x}_i \times \bf{F}_{ij} + \sum_{j < i} \bf{x}_i \times (-\bf{F}_{ji}) \\ &= \sum_{i < j} \bf{x}_i \times \bf{F}_{ij} + \sum_{i < j} \bf{x}_j \times (-\bf{F}_{ij}) \\ &= \sum_{i < j} (\bf{x}_i - \bf{x}_j) \times \bf{F}_{ij} \end{align*} which is 0 if $\bf{F}_{ij}$ is parallel to $(\bf{x} - \bf{x}_j)$, for example in gravity and electromagnetism. \myskip This is a stronger version of Newton's third law: \begin{enumerate}[N1] \item[N3'] $\bf{F}_{ij} = -\bf{F}_{ji}$ and is parallel to $(\bf{x}_i - \bf{x}_j)$. \end{enumerate} If N3' holds, then $\dfrac{\bf{L}}{t} = \bf{\tau}$. \subsubsection*{Conservation of Energy} The kinetic energy \[ T = \half \sum_i m_i \dot{\bf{x}}_i \cdot \dot{\bf{x}}_i \] We write \[ \bf{x}_i = \bf{R} + \bf{y}_i \] where $\bf{R}$ is the position of the centre of mass. Since \[ \sum_i m_i \bf{x}_i = M \bf{R} \] \[ \implies \sum_i m_i \bf{y}_i = 0 \] Then \begin{align*} T &= \half \sum_i m_i (\dot{\bf{R}} + \dot{\bf{y}}_i)^2 \\ &= \half \sum_i m_i \dot{\bf{R}}^2 + \dot{\bf{R}} \cdot \cancel{\sum_i m_i \bf{y}_i} + \half \sum_i m_i \dot{\bf{y}}_i \cdot \dot{\bf{y}}_i \\ &= \half \sum_i m_i \dot{\bf{R}}^2 + \half \sum_i m_i \dot{\bf{y}}_i \cdot \dot{\bf{y}} \\ &= \half M \dot{\bf{R}}^2 + \half \sum_i m_i \dot{\bf{y}}^2 \end{align*} where $\half M \dot{\bf{R}}^2$ is the energy of the centre of mass, and $\half \sum_i m_i \dot{\bf{y}}_i^2$ is the energy due to motion around the centre of mass. \\ We repeat the analysis of work done in 3D (section 2.2). The $i$-th particle moves on a trajectory $C_i$. Then \[ T(t_2) - T(t_1) = \sum_i \int_{C_i} \bf{F}_i^{\text{ext}} \cdot \dd \bf{x}_i + \sum_i \sum_{i \neq j} \int_{C_i} \bf{F}_{ij} \cdot \dd \bf{x}_i \] We can define a potential energy if \begin{itemize} \item $\bf{F}_i^{\text{ext}} = -\nabla V_i (\bf{x}_i)$ (summation convention is \emph{not} used here) \item $\bf{F}_{ij} = -\nabla V_{ij} (|\bf{x}_i - \bf{x}_j|)$ (summation convention is \emph{not} used here) \end{itemize} Remember $\nabla = \left( \pfrac{}{x}, \pfrac{}{y}, \pfrac{}{z} \right)$. The energy \[ E = T + \sum_i V_i(\bf{x}_i) + \sum_i \sum_{j \neq i} V_{ij}(|x_i - x_j|) \] is conserved. \subsubsection*{The 2 Body Problem as a 1 Body Problem} Consider 2 particles with $\bf{F}_i^{\text{ext}} = 0$. The centre of mass $M \bf{R} = m_1 \bf{x}_1 + m_2 \bf{x}_2$ and the relative separation is \[ \bf{r} = \bf{x}_1 - \bf{x}_2 \] \[ \bf{x}_1 = \bf{R} + \frac{m_2}{M} \bf{r} \] \[ \bf{x}_2 = \bf{R} - \frac{m_1}{M} \bf{r} .\] \begin{center} \includegraphics[width=0.6\linewidth] {images/2ecb94b08f3e11ec.png} \end{center} Since $\bf{F}_i^{\text{ext}} = 0$, $\ddot{\bf{R}} = 0$ (see last lecture). Meanwhile \begin{align*} \ddot{\bf{r}} &= \ddot{\bf{x}_1} - \ddot{\bf{x}_2} \\ &= \frac{1}{m_1} \bf{F}_{12} - \frac{1}{m_2} \bf{F}_{21} \\ &= \frac{m_1 + m_2}{m_1m_2} \bf{F}_{12} \\ \implies \mu \ddot{\bf{r}} &= \bf{F}_{12}(r) \end{align*} where $\mu$ is the \emph{reduced mass} \[ \mu := \frac{m_1m_2}{m_1 + m_2} \] This is the same as the equation for one particle of mass $\mu$ and position $\bf{r}$. \subsubsection*{Collisions} \emph{elastic collisions} are ones in which both kinetic energy and momentum are conserved - these come from conservative inter-particle forces between the two colliding particles. Take \begin{center} \includegraphics[width=0.6\linewidth] {images/4ac7e4b08f3f11ec.png} \end{center} conservation of energy \[ \half m \bf{v}^2 = \half m \bf{v}_1^2 + \half m \bf{v}_2^2 \] conservation of momentum \[ m \bf{v} = m \bf{v}_1 + m \bf{v}_2 \] hence \[ \bf{v}^2 = \bf{v}_1^2 + \bf{v}_2^2 + 2\bf{v}_1 \cdot \bf{v}_2 \] Then combining with conservation of energy gives \[ \bf{v}_1 \cdot \bf{v}_2 = 0 .\] i.e. one of the final state particles is stationary or they travel at right angles. \begin{note*} We have some information about the final state from conservation laws but not a unique outcome. \\ Not surprising: $\bf{v}_1, \bf{v}_2$ have 6 parameters, but 4 constraint equations: 1 energy, 3 momentum. \end{note*} \subsubsection*{Impulse} When particles are subject to short, sharp shocks (for example in collisions) one talks of impulse rather than force. If a force acts for a short time $\Delta t$, the \emph{impulse} experienced by the particle is \[ \bf{I} = \int_t^{t + \Delta t} \bf{F} \dd t \stackrel{(N2)}{=} \Delta \bf{p} \] \subsubsection*{Bouncing Balls} 2 equations, 2 unknowns: after collision, small ball has speed $v$ and big ball has speed $V$. \begin{center} \includegraphics[width=0.6\linewidth] {images/60693a088f3f11ec.png} \end{center} Best to think of balls as slightly separated. Conservation of $E$: \[ mu^2 + Mu^2 = mv^2 + MV^2 \] Conservation of $p$: \[ Mu - mu = mv + MV \] One can check David Tong's note for the full solution, but one can solve to get \[ \boxed{v = \frac{3M - m}{M + m} u} \]