% vim: tw=50 % 10/02/2022 10AM \subsubsection*{Scattering} Consider a potential $V(r)$ such that $V(r) \to 0$ as $r \to \infty$. For a repulsive potential, the trajectory will look something like \begin{center} \includegraphics[width=0.6\linewidth] {images/7f5533808b8f11ec.png} \end{center} Conservation of energy implies \[ V_{\text{initial}} = v_{\text{final}} := v \] In a central potential, we have conservation of angular momentum, i.e. \[ l = |\bf{x} \times \dot{\bf{x}}| =\frac{|\bf{L}|}{m} \] is conserved. \begin{claim*} \[ l_{\text{initial}} =bv_{\text{initial}} \] \end{claim*} \begin{proof} Suppose $V = 0$. The particle follows a straight horizontal line. At the closest point to the origin, its angular momentum per unit mass is $bv_{\text{initial}}$, but by conservation of $l$, this must be the same as $l_{\text{initial}} = bv_{\text{initial}}$. \end{proof} \myskip In the presence of $V$ i.e. the potential, we have \[ l_{\text{initial}} = l_{\text{final}} = b'v_{\text{final}} \implies b = b' \] \subsubsection*{Rutherford Scattering} A repulsive Coulomb potential \[ V = \frac{qQ}{4\pi \eps_0 r} \] (replace $k = -\frac{qQ}{4\pi \eps_0 m}$) \begin{center} \includegraphics[width=0.6\linewidth] {images/5822d1a48b9011ec.png} \end{center} $\phi$ is the \emph{scattering angle}. In the short term though, it's more useful to consider $\alpha$. ($\phi = \pi - 2\alpha$) \myskip \textbf{Question}: How does $\phi$ depend on $v$ and $b$? \\ Recall from last lecture for a repulsive potential \[ r = \frac{|r_0|}{e\cos\theta - 1} \to \infty \] when $\theta = \alpha \implies \cos\alpha = \frac{1}{e}$. ($e > 1 \implies \alpha < \frac{\pi}{2}$) \\ Energy of particle (last lecture) \begin{align*} E &= \frac{mk^2}{2l^2} (e^2 - 1) \\ &= \half mv^2 \\ &= \frac{mk^2}{2l^2} \tan^2 \alpha \end{align*} sub in $l = bv$: \[ \implies \frac{1}{\tan^2 \alpha} = \frac{k^2}{b^2v^4} \qquad \text{or} \qquad \frac{1}{\tan\alpha} = \frac{|k|}{bv^2} \] \begin{note*} \[ \tan \frac{\phi}{2} = \tan \left( \frac{\pi}{2} - \alpha \right) = \frac{1}{\tan\alpha} \] \end{note*} \[ \implies \boxed{\phi = 2\tan^{-1} \left( \frac{|k|}{bv^2} \right)} \] This is the scattering formula. \newpage \section{Systems of Particles} So far we've only covered the motion of a single particle. We now describe $N$ interacting particles. Put a label $i = 1, \dots, N$ on everything. The $i$-th particle has mass $m_i$, position $\bf{x}_i$ and momentum $\bf{p}_i$. \\ For each particle, \begin{enumerate}[N1] \item[N2] is $\dot{\bf{p}}_i = \bf{F}_i$, force on $i$-th particle. The force can be split into two parts: \[ \bf{F}_i = \bf{F}_i^{\text{ext}} + \sum_{j \neq i} \bf{F}_{ij} \] where $\bf{F}_i^{\text{ext}}$ is an external force on the $i$-th particle, and $\bf{F}_{ij}$ is the force on the $i$-th particle due to the $j$-th particle. \item[N3] is $\bf{F}_{ij} = -\bf{F}_{ji}$. This holds for gravitational and Coulomb forces. \end{enumerate} \subsection{Centre of Mass Motion} The total mass of the system $M = \sum_i m_i$. The \emph{centre of mass} is defined as \[ \bf{R} := \frac{1}{M} \sum_{i = 1}^N m_i \bf{x}_i \] The total momentum of the system is captured by the centre of mass \[ \ul{\bf{P}} := \sum_{i = 1}^N \bf{p}_i = M \dot{\bf{R}} \] \begin{align*} \ul{\dot{\bf{P}}} &= \sum_i \dot{\bf{p}}_i \\ &= \sum_i \left( \bf{F}_i^{\text{ext}} + \sum_{j \neq i} \bf{F}_{ij} \right) \\ &= \sum_i \bf{F}_i^{\text{ext}} + \sum_{i < j} (\bf{F}_{ij} + \bf{F}_{ji}) \\ &= \sum_i \bf{F}_i^{\text{ext}} \end{align*} This is important: the motion of the centre of mass is only due to the external forces. \subsubsection*{Conservation of Momentum} If $\sum_i \bf{F}_i^{\text{ext}} = 0$, $\ul{\bf{P}}$ is conserved (i.e. $\ul{\dot{\bf{P}}} = 0$).