% vim: tw=50 % 09/02/2022 11AM \newpage \section{Differentiability [5]} Let $f : E \subseteq \CC \to \CC$, most of the time $E = \text{interval} \subseteq \RR$. \begin{definition*} Let $x \in E$ be a point such that $\exists x_n \in E$ with $x_n \neq x \,\,\forall\,\,n$ and $x_n \to x$ (i.e. a limit point). $f$ is said to be \emph{differentiable} at $x$ with derivative $f'(x)$ if \[ \lim_{y \to x} \frac{f(y) - f(x)}{y - x} = f'(x) \] If $f$ is differentiable at each $x \in E$ then we say that $f$ is differentiable on $E$. (Think of $E$ as an interval or a disc in the case of $\CC$). \end{definition*} \subsubsection*{Important Remarks} \begin{enumerate}[(1)] \item Other common notations: \[ \dfrac{y}{x} \qquad \dfrac{f}{x} \] \item $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$ ($y = x + h$) \item Another look at the definition: Let \[ \eps(h) := f(x + h) - f(x) - hf'(x) \] then \[ \lim_{h \to 0} \frac{\eps(h)}{h} = 0 \] \[ f(x + h) = f(x) + hf'(x) + \eps(h) \] Alternative definition of differentiability: \begin{definition*} $f$ is differentiable at $x$ if $\exists A$ and $\eps$ such that \[ f(x + h) = f(x) + hA + \eps(h) \] where \[ \lim_{h \to 0} \frac{\eps(h)}{h} = 0 \] If such an $A$ exists, then it is \emph{unique} since \[ A = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \] \end{definition*} \begin{center} \includegraphics[width=0.6\linewidth] {images/eab92a48975411ec.png} \end{center} \item If $f$ is differentiable at $x$ then $f$ is continuous at $x$ since $\eps(h) \to 0$, so $f(x + h) \to f(x)$ as $h \to 0$. \item Alternative ways of writing things: \[ f(x + h) = f(x) + hf'(x) + h\eps_f(h) \] with $\eps_f(h) \to 0$ as $h \to 0$. Or \[ f(x) = f(a) + (x - a)f'(a) + (x - a)\eps_f(x) \] where $\lim_{x \to a} \eps_f(x) = 0$ as $x \to a$. \end{enumerate} \begin{example*} $f(x) = |x|$, $f : \RR \to \RR$. \begin{center} \includegraphics[width=0.6\linewidth] {images/9eced2a8975511ec.png} \end{center} Clearly $f'(x) = 1$ for $x > 0$ and $f'(x) = -1$ for $x < 0$. Now for $x = 0$: \\ Take $h_n > 0$: \[ \lim_{n \to \infty} \frac{f(h_n) - f(0)}{h_n} = \lim \frac{h_n}{h_n} = 1 \] Take $h_n < 0$: \[ \lim_{n \to \infty} \frac{f(h_n) - f(0)}{h_n} = \lim -\frac{h_n}{h_n} = -1 \] so \emph{not} differentiable at $x = 0$. \end{example*} \subsubsection*{Differentiation of Sums, Products, etc} \begin{proposition} \begin{enumerate}[(i)] \item If $f(x) = c$ for all $x \in E$ then $f$ is differentiable with $f'(x) = 0$. \item $f, g$ differentiable at $x$, then so is $f + g$ and \[ (f + g)'(x) = f'(x) + g'(x) \] \item $f, g$ differentiable at $x$, then so is $fg$ and \[ (fg)'(x) = f'(x)g(x) + f(x)g'(x) \] \item $f$ differentiable at $x$ and $f(x) \neq 0 \,\,\forall\,\,x \in E$, then $\frac{1}{f}$ is differentiable at $x$ and \[ \left( \frac{1}{f} \right)'(x) = -\frac{f'(x)}{[f(x)]^2} \] \end{enumerate} \end{proposition} \begin{proof} \begin{enumerate}[(i)] \item $\lim_{h \to 0} \frac{c - c}{h} = 0$ \item \[ \lim_{h \to 0} \frac{f(x + h) + g(x + h) - f(x) - g(x)}{h} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} \] \[ = f'(x) + g'(x) \] using properties of limits \item $\phi(x) = f(x)g(x)$. \[ \lim_{h \to 0} \frac{\phi(x + h) - \phi(x)}{h} = \lim_{h \to 0} \frac{f(x + h)g(x + h) - f(x)g(x)}{h} \] \[ = \lim_{h \to 0} f(x + h) \left[ \frac{g(x + h) - g(x)}{h} \right] + g(x) \left[ \frac{f(x + h) - f(x)}{h} \right] = f(x)g'(x) + f'(x)g(x) \] using standard properties of limits and the fact that $f$ is continuous at $x$. \item $\phi(x) = \frac{1}{f(x)}$ \[ \lim_{h \to 0} \frac{\phi(x + h) - \phi(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{f(x + h)} - \frac{1}{f(x)}}{h} \] \[ = \lim_{h \to 0} \frac{f(x) = f(x) + h}{h} \times \frac{1}{f(x)f(x + h)} = -\frac{f'(x)}{[f(x)]^2} \] \end{enumerate} \end{proof} \begin{remark*} from (iii) and (iv) we get \[ \left( \frac{f(x)}{g(x)} \right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} \] \end{remark*}