% vim: tw=50 % 02/02/2022 11AM \newpage \section{Continuity [3]} Let $E \subseteq \CC$ non-empty, $f : E \to \CC$ any function, and let $a \in E$. (This includes the case in which $f$ Is real-valued and $E \subseteq \RR$). \setcounter{customdefinition}{0} \begin{definition} $f$ is continuous at $a \in E$ if for every sequence $z_n \in E$ with $z_n \to a$, we have $f(z_n) \to f(a)$. \end{definition} \begin{definition} $f$ is continuous at $a \in E$, if given $\eps > 0$, $\exists \delta > 0$ such that if $|z - a| < \delta$, $z \in E$, then \[ |f(z) - f(a)| < \eps \] ($\eps$-$\delta$ definition). \end{definition} \noindent We will prove that these two definitions are equivalent. \begin{proof} We know that given $\eps > 0$, $\exists \delta > 0$ such that $|z - a| < \delta$, $z \in E$, then $|f(z) - f(a)| < \eps$. Let $z_n \to a$. Then $\exists n_0$ such that $\forall\,\,n \ge n_0$ we have $|z_n - a| < \delta$ hence $|f(z_n) - f(a)| < \eps$ so $f(z_n) \to f(a)$. For the other direction, assume that $f(z_n) \to f(a)$ whenever $z_n \to a$ ($z_n \in E$). Suppose $f$ is \emph{not} continuous at $a$ according to definition 2. Then: \begin{center} $\exists \eps > 0$ such that $\forall\,\,\delta > 0$, there exists $z \in E$ such that $|z - a| < \delta$ and $|f(z) - f(a)| \ge \eps$. \end{center} Let $\delta = \frac{1}{n}$, from the above we get $z_n$ such that $|z_n - a| < \frac{1}{n}$ and $|f(z_n) - f(a)| \ge \eps$. Clearly $z_n \to a$, but $f(z_n)$ does not tend to $f(a)$ because $f(z_n) - f(a)| \ge \eps$, contradiction. \end{proof} \begin{proposition} $a \in E$, $g, f : E \to \CC$ continuous at $a$> Then so are the functions $f(z) + g(z)$, $f(z)g(z)$ and $\lambda f(z)$ for any constant $\lambda$. In addition if $f(z) \neq 0 \,\,\forall\,\, z \in E$ then $\frac{1}{f}$ is continuous at $a$. \end{proposition} \begin{proof} Using definition 1, this is obvious. Using the analogous results for sequences (lemma 1.1), for example if $z_n \to a$ then $f(z_n) \to f(a)$ and $g(z_n) \to g(a)$ so by lemma 1.1 $f(z_n) + g(z_n) \to f(a) + g(a)$ etc. \end{proof} \myskip The function $f(z) = z$ is continuous, so by using the proposition, we get that every polynomial is continuous at every point in $\CC$. \begin{note*} We say that $f$ is continuous on $E$ if it is continuous at every $a \in E$. \end{note*} \begin{remark*} Still it is \emph{instructive} to prove proposition 2.1 directly from the $\eps$-$\delta$ definition. \end{remark*} \noindent Next we look at compositions. \begin{theorem} Let $f : A \to \CC$ and $g : B \to \CC$ and $g : B \to \CC$ be two functions such that $f(A) \subset B$. Suppose $f$ is continuous at $a \in A$ and $g$ is continuous at $f(a)$. Then $g \circ f : A \to \CC$ is continuous at $a$. \begin{center} \includegraphics[width=0.6\linewidth] {images/cf427b98972211ec.png} \end{center} \end{theorem} \begin{proof} Take any sequence $z_n \to a$. By assumption $f(z_n) \to f(a)$. Set $w_n = f(z_n) \in B$, $w_n \to f(a)$; thus $g(w_n) = g(f(z_n)) \to g(f(a))$. \end{proof} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $f : \RR \to \RR$ \[ f(x) = \begin{cases} \sin \left( \frac{1}{x} \right) & x \neq 0 \\ 0 & x = 0 \end{cases} \] $\sin x$ is continuous (to be proved later!) \\ if $x \neq 0$, then 2.1 and 2.2 imply that $f(x)$ is continuous at every $x \neq 0$. Discontinuous at 0 because let $x_n = \frac{1}{\left( 2n + \half \right) \pi}$, then $f(x_n) = 1$, $x_n \to 0$ but $f(0) = 0$. \item \eqnoskip \[ f(x) = \begin{cases} x \sin \left( \frac{1}{x} \right) & x \neq 0 \\ 0 & x = 0 \end{cases} \] $f$ is continuous at 0, take $x_n \to 0$ then \[ |f(x_n)| \le |x_n| \] so $f(x_n) \to 0 = f(0)$. \item \eqnoskip \[ f(x) = \begin{cases} 1 & x \in \QQ \\ 0 & x \not\in \QQ \end{cases} \] Discontinuous at every point: if $x \in \QQ$, take a sequence $x_n \to x$ with $x_n \not\in \QQ$, then $f(x_n) = 0$ which doesn't tend to $f(x) = 1$. Similarly if $x \not\in \QQ$, take $x_n \to x$ with $x_n \in \QQ$. Then $f(x_n) = 1$ so doesn't tend to $f(x) = 0$. \end{enumerate}