% vim: tw=50 % 28/01/2022 11AM \subsubsection*{Examples} \begin{itemize} \item $\sum_{j = 1}^\infty \frac{j}{2^j}$. Then \[ \frac{a_{n + 1}}{a_n} = \frac{n + 1}{2^{n + 1}} \cdot \frac{2^n}{n} = \frac{n + 1}{2n} \to \frac{1}{2} < 1 .\] So we have convergence by ratio test. \item $\sum_{j = 1}^\infty \frac{1}{n}$ diverges, and $\sum_{j = 1}^\infty \frac{1}{n^2}$ converges. Note ratio test gives limit 1 in both cases, so \emph{inconclusive} if limit is 1. Since $n^{1 / n} \to 1$ as $n \to \infty$, the root test is also inconclusive when limit is 1. To see this limit, write \[ n^{1 / n} = 1 + \delta_n , \qquad \delta_n > 0 .\] \[ n = (1 + \delta_n)^n > \frac{n(n - 1)}{2} \delta_n^2 \] (binomial expansion) \[ \implies \delta_n^2 < \frac{2}{n - 1} \implies \delta_n \to 0 \] \item $\sum_{j = 1}^\infty \left[ \frac{n + 1}{3n + 5} \right]^n$ converges by root test since \[ \frac{n + 1}{3n + 5} \to \frac{1}{3} < 1 .\] \end{itemize} \noindent Another useful test: \begin{theorem}[Cauchy's Condensation Test] Let $a_n$ be a decreasing sequence of positive terms. Then $\sum_{j = 1}^\infty a_n$ converges if and only if \[ \sum_{j = 1}^\infty 2^n a_{2^n} \] converges. \end{theorem} \begin{proof} First we observe that if $a_n$ is decreasing, then \[ a_{2^k} \le a-{2^{k - 1} + i} \le a_{2^{k - 1}}, \qquad 1 \le i \le 2^{k - 1} \] (for any $k \ge 1$.) Assume now that $\sum_{j = 1}^\infty a_j$ converges with sum $A$. Then \[ 2^{n - 1} a_{2^n} \le a_{2^{n - 1} + 1} + a_{2^{n - 1} + 2} + \cdots + a_{2^n} = \sum_{m = 2^{n - 1}}^{2^n} a_m .\] Thus \[ \sum_{n = 1}^N 2^{n - 1} a_{2^n} \le \sum_{n = 1}^N \sum_{m = 2^{n - 1} + 1}^{2^n} a_m = \sum_{m = 2}^{2^N} a_m .\] \[ \implies \sum_{n = 1}^N 2^n a_{2^n} \le 2 \sum_{m = 2}^{2^N} a_m \le 2(A - a_1) \] Thus $\sum_{n = 1}^N 2^n a_{2^n}$ being increasing and bounded above, \emph{converges}. Conversely, assume that $\sum_{j = 1}^\infty 2^j a_{2^j}$ converges. Then \[ \sum_{m = 2^{n - 1} + 1}^{2^n} a_m \le \sum_{m = 2^{n - 1} + 1}^{2^n} a_{2^{n - 1}} = 2^{n - 1} a_{2^{n - 1}} .\] \[ \implies \sum_{m = 2}^{2^N} a_m = \sum_{n = 1}^N \sum_{m = 2^{n - 1} + 1} a_m \le \sum_{n = 1}^N 2^{n - 1} a_{2^{n - 1}} \le B .\] So $\sum_{m = 1}^N a_m$ is a bounded increasing sequence and thus it converges. \end{proof} \subsubsection*{Examples / Applications} \begin{claim*} $\sum_{j = 1}^\infty \frac{1}{n^k}$ converges if and only if $k > 1$. \end{claim*} \begin{proof} Note that it is a decreasing sequence of positive terms. \[ \frac{1}{(n + 1)^k} < \frac{1}{n^k}, \qquad \left( \frac{n}{n + 1} \right)^k < 1 \] Now: \[ 2^n a_{2^n} = 2^n \left[ \frac{1}{2^n} \right]^k = 2^{n - nk} = (2^{1 - k})^n \] so it is a geometric series with ratio $2^{1 - k}$, and it converges if and only if $2^{1 - k} < 1$, so if and only if $k > 1$. \end{proof} \subsubsection*{Alternating Series} \begin{theorem}[Alternating Series Test] If $a_n$ decreases and tends to zero as $n \to \infty$, then the series $\sum_{j = 1}^\infty (-1)^{n + 1} a_n$ converges. \end{theorem} \begin{example*} $\sum_{n = 1}^\infty \frac{(-1)^{n + 1}}{n}$ converges. \end{example*} \begin{proof} Let $s_n = a_1 - a_2 + \cdots + (-1)^{n + 1} a_n$. Note \[ s_{2n} = (a_1 - a_2) + (a_3 - a_4) + \cdots + \ub{(a_{2n - 1} - a_{2n})}_{\ge 0} \ge s_{2n - 2} \] \[ s_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \cdots - (a_{2n - 2} - a_{2n - 1}) - a_{2n} \le a_1 \] So $s_{2n}$ is increasing and bounded above, so $s_{2n} \to s$. Also note $s_{2n + 1} = s_{2n} + a_{2n + 1} \to s + 0 = s$. This implies that $s_n$ converges to $s$: \\ Given $\eps > 0$, there exists $N_1$ such that for all $n \ge N_1$, $|s_{2n} - s| < \eps$ and there exists $N_2$ such that for all $n \ge N_2$, $|s_{2n + 1} - s| < \eps$. Take $N = 2\max\{N_1, N_2\} + 1$. Then if $k \ge N$, we have $|s_k - s| < \eps$, so $s_k \to s$. \end{proof}