% vim: tw=50 % 26/01/2022 11AM \begin{example*}[Geometric Series] $x \in \RR$, set $a_n = x^{n - 1}$ for $n \ge 1$. Now \[ s_n = \sum_{j = 1}^n a_j = 1 + x + x^2 + \cdots + x^{n - 1} \] Then \[ s_n = \begin{cases} \frac{1 - x^n}{1 - x} & \text{for $x \neq 1$} \\ n & \text{for $x = 1$} \end{cases} \] \[ xs_n = x + x^2 + \cdots + x^n = s_n - 1+ x^n \] \[ s_n(1 - x) = 1 - x^n \] if $|x| < 1$, $x^n \to 0$ and $s_n \to \frac{1}{1 - x}$. If $x > 1$, $x^n \to \infty$ and $s_n \to \infty$. (Note $s_n \to \infty$ if given $A$, there exists $N$ such that $s_n > A$ such that $s_n > A \,\,\forall\,\, n \ge N$, and $s_n \to -\infty$ if given $A$ there exists $N$ such that $s_n < -A$ for all $n \ge N$.) If $x < -1$ then $s_n$ does not converge (oscillates). If $x = -1$ then \[ s_n = \begin{cases} 1 & \text{$n$ odd} \\ 0 & \text{$n$ even} \end{cases} \] Thus the geometric series converges if and only if $|x| < 1$. \end{example*} \noindent To see for example that $x^n \to 0$ if $|x| < 1$, consider first the case $0 < x < 1$. Write $\frac{1}{x} = 1 + \delta$, $\delta > 0$. So \[ x^n = \frac{1}{(1 + \delta)^n} \le \frac{1}{1 + \delta n} \to 0 .\] because $(1 + \delta)^n \ge 1 + n\delta$ from binomial expansion. An easy observation from this is that: \begin{lemma} If $\sum_{j = 1}^\infty a_n$ converges, then $\lim_{j \to \infty} a_j = 0$. \end{lemma} \begin{proof} \[ s_n = \sum_{j = 1}^n a_j \] Then \[ a_n = s_n - s_{n - 1} .\] If $s_n \to a$, then $a_n \to 0$ (since $s_{n - 1} \to a$ as well). \end{proof} \begin{remark*} The converse of lemma 1.7 is false! For example, $\sum_{j = 1}^\infty \frac{1}{j}$ diverges (harmonic series). \[ s_n = \sum_{j = 1}^n \frac{1}{j} \] \[ s_{2n} = s_n + \frac{1}{n + 1} + \frac{1}{n + 2} + \cdots + \frac{1}{n + n} > s_n + \frac{1}{2} \] since $\frac{1}{n + k} \ge \frac{1}{2n}$ for $k = 1, 2, \dots, n$. So if $s_n \to a$, then $s_{2n} \to a$ also, and thus $a \ge a + \half$ \contradiction \end{remark*} \subsubsection*{Series of Non-negative Terms} $a_n \ge 0$. Basic result: \begin{theorem}[The comparison test] Suppose that $0 \le b_n \le a_n \,\,\forall\,\, n$. Then if $\sum_{j = 1}^\infty a_j$ converges, then so does $\sum_{j = 1}^\infty b_j$. \end{theorem} \begin{proof} Let $s_n = \sum_{j = 1}^N a_j$ and let $d_N = \sum_{j = 1}^N b_j$. Since $b_n \le a_n$ we have that $d_N \le s_N$. But $s_N \to s$, so $d_N \le s_N \le s \,\,\forall\,\, N$. Also, $d_N$ is an increasing sequence bounded above, hence $d_N$ converges. \end{proof} \begin{example*} \[ \sum_{j = 1}^\infty \frac{1}{n^2} \] \[ \ub{\frac{1}{n^2} < \frac{1}{n(n - 1)}}_{n \ge 2} = \frac{1}{n - 1} - \frac{1}{n} = a_n \] So \[ \sum_{j = 2}^N a_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots + \frac{1}{N - 1} - \frac{1}{N} = 1 - \frac{1}{N} \to 1 \] So by comparison, $\sum_{j = 1}^N \frac{1}{n^2}$ converges. In fact we get that \[ \sum_{j = 1}^\infty \frac{1}{n^2} \le 1 + 1 = 2 .\] \end{example*} \begin{theorem}[Root test / Cauchy's test for convergence] Assume $a_n \ge 0$ and $a_n^{1 / n} \to a$ as $n \to \infty$. Then if $a < 1$, $\sum a_n$ converges; if $a > 1$, $\sum a_n$ diverges. \end{theorem} \begin{remark*} Nothing can be said if $a = 1$ (examples coming up). \end{remark*} \begin{proof} If $a < 1$, choose $a < r < 1$. By definition of limit and hypothesis, there exists $N$ such that for all $n \ge N$, \[ a_n^{1 / n} < r \implies a_n < r^n \] But since $r < 1$, the geometric series $\sum r^n$ converges, so by theorem 1.8, $\sum a_n$ converges. If $a > 1$, then for $n \ge N$, then $a_n^{1 / n} > 1 \implies a_n > 1$, thus $\sum a_n$ diverges (since $a_n$ does \emph{not} tend to zero). \end{proof} \begin{theorem}[Ratio test / D'Alembert's test] Suppose $a_n > 0$ and $\frac{a_{n + 1}}{a_n} \to \ell$. If $\ell < 1$, $\sum a_n$ converges. If $\ell > 1$, $\sum a_n$ converges. \end{theorem} \begin{note*} As before, nothing can be said for $\ell = 1$. \end{note*} \begin{proof} Suppose $\ell < 1$ and choose $r$ with $\ell < r < 1$. Then there exists $N$ such that for all $n \ge N$, \[ \frac{a_{n + 1}}{a_n} < r \] Therefore \[ a_n = \frac{a_n}{a_{n - 1}} \frac{a_{n - 1}}{a_{n - 2}} \cdots \frac{a_{N + 1}}{a_N} a_N < a_N r^{n - N} \] \[ \implies a_n < Kr^n \] with $K$ \emph{independent} of $n$. Since $\sum r^n$ converges, so does $\sum a_n$ by theorem 1.8. If $\ell > 1$, choose $1 < r < \ell$, then $\frac{a_{n + 1}}{a_n} > r$ for all $n \ge N$, and as before \[ a_n = \frac{a_n}{a_{n - 1}} \frac{a_{n - 1}}{a_{n - 2}} \cdots \frac{a_{N + 1}}{a_N} a_N > a_N r^{n - N} > a_N \] so $\sum a_n$ diverges. \end{proof}