% vim: tw=50 % 16/03/2022 11AM \subsubsection*{Examples} \begin{enumerate}[(1)] \item $\sum_1^\infty \frac{1}{n^k}$ converges if and only if $k > 1$ ($*$). We saw that $\int_1^\infty \frac{1}{x^k}$ converges if and only if $k > 1$, so from the integral test we get ($*$). \item $\sum_2^\infty \frac{1}{n \log n}$, $f(x) = \frac{1}{x\log x}$, $x \ge 2$. \[ \int_2^R \frac{\dd x}{x \log x} = \left. \log(\log x) \right|_2^R = \log(\log R) - \log(\log 2) \to \infty \] as $R \to \infty$. Integral test implies \[ \sum_2^\infty \frac{1}{n \log n} \] diverges. \begin{corollary}[Euler's constant] As $n \to \infty$, $1 + \frac{1}{2} + \cdots + \frac{1}{n} - \log n \to \gamma$ with $0 \le \gamma \le 1$. \end{corollary} \begin{proof} Set $f(x) = \frac{1}{x}$ and use Theorem 5.14. \end{proof} \begin{note*} An open problem asks ``Is $\gamma$ irrational? ($\gamma \approx 0.577$)'' \end{note*} \end{enumerate} \myskip We have seen: monotone functions and continuous functions are Riemann integrable. We can generalize this a bit and say that \emph{piece-wise continuous} functions are integrable. \begin{center} \includegraphics[width=0.6\linewidth] {images/f106751ac4e311ec.png} \end{center} \begin{definition*} A function $f : [a, b] \to \RR$ is said to be piece-wise continuous if there is a dissection \[ \mathcal{D} = \{a = x_0, x_1, \dots, x_n = b\} \] such that \begin{enumerate}[(1)] \item $f$ is continuous on $(x_{j - 1}, x_j) \,\,\forall\,\, j$ \item The one-sided limits \[ \lim_{x \to x_{j - 1}^+} f(x), \qquad \lim_{x \to x_{j - 1}^-} f(x) \] exist. \end{enumerate} \end{definition*} \noindent It is now an \emph{exercise} to check that $f$ is Riemann integrable: just check that $f |_{[x_{j - 1}, x_j]}$ is integrable for each $j$. (the values of $f$ and the endpoints won't really matter) and use additivity of domain (property (6)). \myskip Question: How large can the discontinuity set of $f$ be while $f$ is still Riemann integrable? \myskip Recall the example: \[ f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \\ 0 & \text{otherwise} \end{cases} \] on $[0, 1]$. \begin{note*} What follows is non-examinable. \end{note*} \noindent Answer: Henri Lebesgue characterization of Riemann integrability: $f : [a, b] \to \RR$ bounded. Then $f$ is Riemann integrable if and only if the set of discontinuity points has \emph{measure zero}. \begin{definition*} Let $l(I)$ be the length of an interval $I$. A subset $A \subset \RR$ is said to have measure zero if for each $\eps > 0$, $\exists$ a countable collection of intervals $I_j$ such that \[ A \subset \bigcup_{j = 1}^\infty I_j \] and \[ \sum_j l(I_j) < \eps \] \end{definition*} \begin{lemma*} \begin{enumerate}[(1)] \item Every countable set has measure zero. \item If $B$ has measure zero and $A \subset B$, then $A$ has measure zero. \item If $A_k$ has measure zero $\forall\,\, k \in \NN$, then $\bigcup_{k \in \NN} A_k$ also has measure zero. \end{enumerate} \end{lemma*} \subsubsection*{Oscillation of $f$} $I$ interval: \[ \omega_f(I) = \sup_I f - \inf_I f \] oscillation of $f$ at a point: \[ \omega_f(x) = \lim_{\eps \to 0} \omega_f(x - \eps, x + \eps) \] \begin{lemma*} $f$ is continuous at $x$ if and only if $\omega_f(x) = 0$. \end{lemma*} \begin{proof} Exercise. \end{proof} \subsubsection*{Brief Sketch of Lebesgue's criteria} \[ D = \{x \in [a, b] : f \text{ discontinuous at } x\} = \{x : \omega_f(x) > 0\} \] \[ N(\alpha) = \{x : \omega_f(x) \ge \alpha\} \] \[ D = \bigcup_1^\infty N \left( \frac{1}{k} \right) \] Required to prove: $D$ has measure zero. Let $\eps > 0$ be given, $\exists\,\, \mathcal{D}$ such that \[ \sum_{j = 1}^n \omega_f([x_{j - 1}, x_j])(x_j - x_{j - 1}) S(f, \mathcal{D}) - s(f, \mathcal{D}) < \frac{\eps \alpha}{2} \] \[ F = \{j : (x_{j - 1}, x_j) \cap N(\alpha) \neq \emptyset\} \] then for each $j \in F$, \[ \omega_f([x_{j - 1}, x_j]) \ge \alpha \] \[ \implies \alpha \sum_{j \in F} (x_j - x_{j - 1}) \le \sum_{j \in F} \omega_f([x_{j - 1}, x_j])(x_j - x_{j - 1}) < \frac{\eps \alpha}{2} \] \[ \implies \sum_{j \in F} (x_j - x_{j - 1}) < \frac{\eps}{2} \] These cover $N(\alpha)$ except perhaps for $\{x_0, x_1, \dots, x_n\}$. But these can be covered by intervals of total length $< \frac{\eps}{2}$ hence $N(\alpha)$ can be covered by total length $< \eps$. \myskip For the other direction, let $\eps > 0$ be given. $N(\eps) \subset D$, so $N(\eps)$ has measure zero. $N(\eps)$ is closed and bounded hence it can be covered by finitely many open intervals of total length $< \eps$. \[ N(\eps) = \bigcup_{i = 1}^m U_i \] \[ K = [a, b] \setminus \bigcup_{i = 1}^m U_i \] compact so it can be covered by finitely many intervals $J_j$ such that \[ \omega_f (J_j) < \eps .\]