% vim: tw=50 % 14/03/2022 11AM \subsection{Improper Integrals (infinite integrals)} \begin{definition*} Suppose $f : [a, \infty) \to \RR$ integrable (and bounded) on every interval $[a, R]$ and that as $R \to \infty$ \[ \int_a^R f(x) \dd x \to l \] Then we say that $\int_a^\infty f(x) \dd x$ \emph{exists} or \emph{converges} and that its value is $l$. If $\int_a^R f(x) \dd x$ does not tend to a limit, we say that $\int_a^\infty f(x) \dd x$ \emph{diverges}. A similar definition applies to $\int_{-\infty}^a f(x) \dd x$. If \[ \int_a^\infty f = l_1 \qquad \text{and} \qquad \int_{-\infty}^a f = l_2 \] we write \[ \int_{-\infty}^\infty f = l_1 + l_2 \] (independent of the particular value of $a$). \end{definition*} \begin{note*} This last bit is \emph{not} the same as saying that \[ \lim_{R \to \infty} \int_{-R}^R f(x) \dd x \] exists. It is stronger: for example \[ \int_{-R}^R x \dd x = 0 \] \end{note*} \begin{example*} $\int_1^\infty \frac{\dd x}{x^k}$ converges if and only if $k > 1$. Indeed, if $k \neq 1$ then \[ \int_1^R \frac{\dd x}{x^k} = \left. \frac{x^{1 - k}}{1 - k} \right|_1^R = \frac{R^{1 - k} - 1}{1 - k} \] and as $R \to \infty$ this limit is finite if and only if $k > 1$. If $k = 1$, \[ \int_1^R \frac{\dd x}{x} = \log R \to \infty \] \end{example*} \subsubsection*{Remarks} \begin{enumerate}[(1)] \item $\frac{1}{\sqrt{x}}$ continuous on $[\delta, 1]$ for any $\delta > 0$, and \[ \int_\delta^1 \frac{1}{\sqrt{x}} \dd x = \left. 2\sqrt{x} \right|_\delta^1 = 2 - 2\sqrt{\delta} \to 2 \] as $\delta \to 0$. \begin{center} \includegraphics[width=0.6\linewidth] {images/179d97f2c4e011ec.png} \end{center} $\frac{1}{\sqrt{x}}$ is unbounded on $(0, 1]$. \[ \int_0^1 \frac{\dd x}{\sqrt{x}} = \lim_{\delta \to 0} \int_\delta^1 \frac{\dd x}{\sqrt{x}} = 2 \] Exercise: give a general definition for cases like this. \begin{align*} \int_0^1 \frac{\dd x}{x} &= \lim_{\delta \to 0} \int_\delta^1 \frac{\dd x}{x} \\ &= \lim_{\delta \to 0} \left( \left. \log x \right|_\delta^1 \right) \\ &= \lim_{\delta \to 0} (\log 1 - \log \delta) \end{align*} does \emph{not exist}. \item If $f \ge 0$ and $g \ge 0$, for $x \ge a$ and \[ f(x) \le Kg(x) \qquad \forall\,\, x \ge a \] with $K$ a constant, then \[ \int_a^\infty g \text{ converges} \implies \int_a^\infty f \text{ converges} \] and \[ \int_a^\infty f \le K \int_a^\infty g \] Just note that \[ \int_a^R f \le K \int_a^R g \] The function $R \to \int_a^R f$ is increasing ($f \ge 0$) and bounded above (since $\int_a^\infty g$ converges). Take $l = \sup_{R \ge a} \int_a^R f < \infty$, and check that \[ \lim_{R \to \infty} \int_a^R f = l .\] Given $\eps > 0$, $\exists\,\, R_0$ such that \[ \int_a^{R_0} f \ge l - \eps \] Thus if $R \ge R_0$, \[ \int_a^R f \ge \int_a^{R_0} \ge l - \eps \] \[ \implies 0 \le l - \int_a^R f \le \eps \] \begin{example*} $\int_0^\infty e^{-\frac{x^2}{2}} \dd x$. Note $e^{-\frac{x^2}{2}} \le e^{-\frac{x}{2}}$ for $x \ge 1$. Note that \[ \int_1^R e^{-\frac{x}{2}} \dd x = \half [e^{-\half} - e^{-\frac{R}{2}}] \to \frac{e^{-\half}}{2} \] hence $\int_0^\infty e^{-\frac{x^2}{2}}$ converges. \end{example*} \item We know that if $\sum a_n$ converges, then $a_n \to 0$. $\int_a^\infty f$ converges may \emph{not} imply that $f \to 0$. \begin{example*} \begin{center} \includegraphics[width=0.6\linewidth] {images/8f20573cc4e111ec.png} \end{center} \[ \text{Area}(\triangle) = \frac{2}{(n + 1)^2} \] so since $\sum \frac{2}{(n + 1)^2}$ converges, $\int_0^\infty f$ converges. But $f(n) = 1$, so $f \not\to 0$. \end{example*} \end{enumerate} \subsection{The Integral Test} \begin{theorem}[integral test] Let $f(x)$ be a positive \emph{decreasing} function for $x \ge 1$. Then \begin{enumerate}[(1)] \item The integral $\int_1^\infty f(x) \dd x$ and the series $\sum_1^\infty f(n)$ both converge or diverge. \item As $n \to \infty$, \[ \sum_{r = 1}^n f(r) - \int_1^n f(X) \dd x \] tends to a limit $l$ such that $0 \le l \le f(1)$. \end{enumerate} \end{theorem} \begin{center} \includegraphics[width=0.6\linewidth] {images/18e426bac4e211ec.png} \end{center} \begin{note*} $f$ decreasing $\implies$ $f$ integrable on every bounded subinterval by Theorem 5.4. \end{note*} \begin{proof} If $n - 1 \le x \le n$, then \[ f(n - 1) \ge f(x) \ge f(n) \] hence \[ f(n - 1) \ge \int_{n - 1}^n f(x) \dd x \ge f(n) \tag{$*$} \] Adding \[ \sum_1^{n - 1} f(r) \ge \int_1^n f(x) \dd x \ge \sum_2^n f(r) \tag{$**$} \] From this claim (1) is \emph{clear}. For the proof of (2) set \[ \phi(n) = \sum_1^n f(r) - \int_1^n f(x) \dd x \] Then \[ \phi(n) - \phi(n - 1) = f(n) - \int_{n - 1}^n f(x) \dd x \le 0 \] (using ($*$)) From ($**$) \[ 0 \le \phi(n) \le f(1) \] Thus $\phi(n)$ is decreasing and tends to a limit $l$ such that \[ 0 \le l \le f(1) .\] \end{proof}