% vim: tw=50 % 11/03/2022 11AM \begin{corollary}[integration by parts] Suppose $f'$ and $g'$ exist and are continuous on $[a, b]$. Then \[ \int_a^b f'g = f(b)g(b) - f(a)g(a) - \int_a^b fg' \] \end{corollary} \begin{proof} By the product rule \[ (fg)' = f'g + fg' \] By 5.9 \[ f(b)g(b) - f(a)g(a) = \int_a^b f'g + \int_a^b fg' \] \end{proof} \begin{corollary}[integration by substitution] Let $g : [\alpha, \beta] \to [a, b]$ with $g(\alpha) = a$, $g(\beta) = b$ and $g'$ exists and is continuous on $[\alpha, \beta]$. Let $f : [a, b] \to \RR$ be continuous. Then \[ \int_a^b f(x) \dd x = \int_\alpha^\beta f(g(t)) g'(t) \dd t \] \end{corollary} \begin{proof} Set $F(x) = \int_a^x f(t) \dd t$ as before. Let $h(t) = F(g(t))$ (defined since $g$ takes values in $[a, b]$). Then \begin{align*} \int_\alpha^\beta f(g(t)) g'(t) \dd t &= \int_\alpha^\beta F'(g(t)) g'(t) \dd t &&\text{(FTC)} \\ &= \int_\alpha^\beta h'(t) \dd t &&\text{(Chain rule)} \\ &= h(\beta) - h(\alpha) \\ &= F(b) - F(a) \\ &= \int_a^b f(x) \dd x \end{align*} \end{proof} \begin{theorem}[Taylor's Theorem with remainder an integral] Let $f^{(n)}(x)$ be continuous for $x \in [0, h]$. Then \[ f(h) = f(0) + \cdots + \frac{h^{n - 1} f^{(n - 1)}(0)}{(n - 1)!} + R_n \] where \[ R_n = \frac{h^n}{(n - 1)!} \int_0^1 (1 - t)^{n - 1} f^{(n)} (th) \dd t \] \end{theorem} \begin{proof} Substitution $u = th$. \[ R_n = \frac{1}{(n - 1)!} \int_0^h (h - u)^{n - 1} f^{(n)} (u) \dd u \] Integrating by parts now, we get: \[ R_n = -\frac{h^{n - 1} f^{(n - 1)}(0)}{(n - 1)!} + \ub{\frac{1}{(n - 2)!} \int_0^h (h - u)^{n - 2} f^{(n - 1)}(u) \dd u}_{R_{n - 1}} \] If we integrate by parts $n - 1$ times we arrive at: \[ R_n = -\frac{h^{n - 1} f^{(n - 1)}(0)}{(n - 1)!} - \cdots - hf'(0) + \ub{\int_0^h f'(u) \dd u}_{f(h) - f(0)} \] \end{proof} \myskip Now we can get the Cauchy \& Lagrange form of the remainder. However note that the proof above uses continuity of $f^{(n)}$ not just mere existence as in section 3. But first we need to prove: \begin{theorem} $f, g : [a, b] \to \RR$ continuous with $g(x) \neq 0 \,\,\forall\,\, x \in (a, b)$. Then $\exists\,\, c \in (a, b)$ such that \[ \int_a^b f(x) g(x) \dd x = f(c) \int_a^b g(x) \dd x \] \end{theorem} \begin{note*} If we take $g(x) = 1$ we get \[ \int_a^b f(x) \dd x = f(c)(b - a) \] \begin{center} \includegraphics[width=0.6\linewidth] {images/74620426c4dd11ec.png} \end{center} \end{note*} \begin{proof} We're going to use Cauchy's MVT (Theorem 3.7). \[ F(x) = \int_a^x fg, \qquad G(x) = \int_a^x g \] Theorem 3.7 implies $\exists\,\, c \in (a, b)$ such that \[ (F(b) - F(a))G'(c) = F'(c)(G(b) - G(a)) \] \[ \left( \int_a^b fg \right) g(c) = f(c)g(c) \int_a^b g \] Since $g(c) \neq 0$ we simplify and we're done. \end{proof} \myskip Now we want to apply this to \[ R_n = \frac{h^n}{(n - 1)!} \int_0^1 (1 - t)^{n - 1} f^{(n)} (th) \dd t \] First we use Theorem 5.13 with $g \equiv 1$, to get \[ R_n \frac{h^n}{(n - 1)!}(1 - \theta)^{n - 1} f^{(n)}(\theta h) \] ($\theta \in (0, 1)$), which is Cauchy's form of remainder! \myskip To get Lagrange, we use Theorem 5.13 with $g(t) = (1 - t)^{n - 1}$ which is $> 0$ for $t \in (0, 1)$. Therefore $\exists\,\, \theta \in (0, 1)$ such that \[ R_n = \frac{h^n}{(n - 1)!} f^{(n)}(\theta h) \left[ \int_0^1 (1 - t)^{n - 1} \dd t \right] \] and \[ \int_0^1 (1 - t)^{n - 1} \dd t = \left. -\frac{(1 - t)^n}{n} \right|_0^1 = \frac{1}{n} \] \[ \implies R_n = \frac{h^n}{n!} f^{(n)}(\theta h), \qquad \theta \in (0, 1) \] which is Lagrange's form of the remainder!