% vim: tw=50 % 09/03/2022 11AM \myskip Here is another property of Riemann integrals: \begin{enumerate}[(1)] \item[(6)] $f$ is integrable on $[a, b]$. If $a < c < b$, then $f$ is integrable over $[a, c]$ and $[c, b]$ and \[ \int_a^b f = \int_a^c f + \int_c^b f \] Conversely, if $f$ is integrable over $[a, c]$ and $[c, b]$, then $f$ is integrable over $[a, b]$ and \[ \int_a^b f = \int_a^c f + \int_c^b f \] \end{enumerate} \begin{proof}[of (6)] We first make two observations: \begin{itemize} \item If $\mathcal{D}_1$ is a dissection of $[a, c]$ and $\mathcal{D}_2$ is a dissection of $[c, b]$, then $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$ is a dissection of $[a, b]$ and \[ S(f, \mathcal{D}_1 \cup \mathcal{D}_2) = S(f_{[a, c]}, \mathcal{D}_1) + S(f_{[c, b]}, \mathcal{D}_2 \tag{$*_1$} \] \item Also if $\mathcal{D}$ is a dissection of $[a, b]$, then \begin{align*} S(f, \mathcal{D}) &\ge S(f, \mathcal{D} \cup \{c\}) \\ &= S(f_{[a, c]}, \mathcal{D}_1) + S(f_{[c, b]}, \mathcal{D}_2) \tag{$*_2$} \end{align*} where $\mathcal{D}_1$ dissects $[a, c]$ and $\mathcal{D}_2$ dissects $[c, b]$. \end{itemize} Then ($*_1$) gives \[ I^*(f) \le I^*(f_{[a, c]}) + I^*(f_{[c, b]}) \] and ($*_2$) gives \[ I^*(f) \ge I^*(f_{[a, c]}) + I^*(f_{[c, b]}) \] \[ \implies I^*(f) = I^*(f_{[a, c]}) + I^*(f_{[c, b]}) \] Similarly \[ I_*(f) = I_*(f_{[a, c]} + I_*(f_{[c, b]}) \] Thus \begin{align*} 0 &\le I^*(F) - I_*(f) \\ &= [I^*(f_{[a, c]}) - I_*(f_{[a, c]})] + [I^*(f_{[c, b]}) - I_*(f_{[c, b]})] \end{align*} From this (6) follows right away. \end{proof} \begin{notation*} It is a convention that if $a > b$, then \[ \int_a^b f = -\int_b^a f \] and if $a = b$ we agree that its value is zero. With this convention if $|f| \le K$, then \[ \left| \int_a^b f \right| \le K|b - a| \] \end{notation*} \subsubsection*{Fundamental Theorem of Calculus (FTC)} $f : [a, b] \to \RR$ bounded and integrable. Write: \[ F(x) = \int_a^x f(t) \dd t \] $x \in [a, b]$. \begin{theorem} $F$ is continuous. \end{theorem} \begin{proof} \[ F(x + h) - F(x) = \int_x^{x + h} f(t) \dd t \] so \begin{align*} |F(x + h) - F(x)| &= \left| \int_x^{x + h} f(t) \dd t \right| \\ &\le K|h| \end{align*} if $|f| \le K \,\,\forall\,\, t \in [a, b]$. Now let $h \to 0$ and we're done. \end{proof} \begin{theorem}[FTC] If in addition $f$ is continuous at $x$, then $F$ is differentiable at $x$ and \[ F'(x) = f(x) .\] \end{theorem} \begin{proof} We need to consider \[ \left| \frac{F(x + h) - F(x)}{h} - f(x) \right| \] (for $x + h \in [a, b]$ and $h \neq 0$). \begin{align*} \left| \frac{F(x + h) - F(x)}{h} - f(x) \right| &= \frac{1}{|h|} \left| \int_x^{x + h} f(t) \dd t - hf(x) \right| \\ &= \frac{1}{|h|} \left| \int_x^{x + h} [f(t) - f(x)] \dd t \right| \end{align*} $f$ is continuous at $x$, means that given $\eps > 0$, $\exists\,\,\delta > 0$ such that if $|t - x| < \delta$ then \[ |f(t) - f(x)| < \eps \] If $|h| < \delta$, we can write \[ \le \frac{1}{|h|} \eps |h| = \eps \] This means \[ \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = f(x) \] \end{proof} \begin{example*} \[ f(x) = \begin{cases} -1 & x \in [-1, 0] \\ 1 & x \in (0, 1] \end{cases} \] \begin{center} \includegraphics[width=0.6\linewidth] {images/da18b3f2b9eb11ec.png} \end{center} Since monotone, it's integrable. One can check that \[ F(x) = \begin{cases} -x - 1 & x \le 0 \\ x - 1 & x > 0 \end{cases} = -1 + |x| \] \begin{center} \includegraphics[width=0.6\linewidth] {images/125a40f0b9ec11ec.png} \end{center} \end{example*} \begin{corollary}[integration is the inverse of differentiation] If $f = g'$ is continuous on $[a, b]$, then \[ \int_a^x f(t) \dd t = g(x) - g(a) \qquad \forall\,\, x \in [a, b] \] \end{corollary} \begin{proof} From Theorem 5.8 $F - g$ has zero derivative in $[a, b]$. Hence $F - g$ is constant and since $F(a) = 0$ this implies that $F(x) = g(x) - g(a)$. \end{proof} \myskip Every continuous has an \emph{indefinite integral} or anti-derivative written $\int f(x) \dd x$ which is determined up to a constant. \begin{remark*} We have solved the ODE: \[ \begin{cases} y'(x) = f(x) \\ y(a) = y_0 \end{cases} \] \end{remark*}