% vim: tw=50 % 24/01/2022 11AM \subsubsection*{The Bolzano-Weierstrass Theorem} \begin{theorem} If $x_n \in \RR$ and there exists $K$ such that $|x_n| \le K \,\,\forall\,\, n$, then we can find $n_1 < n_2 < n_3 < \cdots$ and $x \in \RR$ such that $x_{n_j} \to x$ as $j \to \infty$. \end{theorem} In other words every \emph{bounded} sequence has a convergent subsequence. \begin{remark*} We say nothing about uniqueness of $x$, for example $x_n = (-1)^n$, then $x_{2n + 1} \to -1$ and $x_{2n} \to 1$. \end{remark*} \begin{proof} Set $[a_1, b_1] = [-K, K]$. Let $c_n = \frac{a_n + b_n}{2}$ for all $n$. Consider the following possibilities: \begin{enumerate}[(1)] \item $x \in [a_1, c_1]$ for infinitely many values of $n$. \item $x_n \in [c_1, b_1]$ for infinitely many values of $n$. \end{enumerate} (1) and (2) could hold at the same time. But if (1) holds, we set $a_2 = a_1$ and $b_2 = c_1$. If (1) fails, we have that (2) must hold and we set $a_2 = c_1$ and $b_2 = b_1$. Proceed inductively to construct sequences $a_n, b_n$ such that $x_m \in [a_n, b_n]$ for infinitely many values of $m$. \[ a_{n - 1} \le a_n \le b_n \le b_{n - 1} \] \[ b_n - a_n = \frac{b_{n - 1} - a_{n - 1}}{2} \tag{$*$} \] (bisection method). Note that $a_n$ is an increasing sequence and bounded, and $b_n$ is a decreasing sequence and bounded, so by the Fundamental Axiom, $a_n \to a \in [a_1, b_1]$ and $b_n \to b \in [a_1, b_1]$. Using ($*$), \[ b - a = \frac{b - a}{2} \implies a = b .\] Since $x_m \in [a_n, b_n]$ for infinitely many values of $m$, having chosen $n_j$ such that $x_{n_j} \in [a_j, b_j]$, there is $n_{j + 1} > n_j$ such that $x_{n_{j + 1}} \in [a_{j + 1}, b_{j + 1}]$ (I have an ``unlimited supply''!) Since $a_j \le x_{n_j} \le b_j$, we have $x_{n_j} \to a$. \end{proof} \subsubsection*{Cauchy Sequences} \begin{definition*}[Cauchy Sequence] $a_n \in \RR$ is called a \emph{Cauchy sequence} if given $\eps > 0$, $\exists\,\, N > 0$ such that $|a_n - a_m| < \eps \,\,\forall\,\, n, m \le N$. (Note: $N = N(\eps)$.) \end{definition*} \begin{lemma} A convergent sequence is a Cauchy sequence. \end{lemma} \begin{proof} If $a_n \to a$, given $\eps > 0$, $\exists\,\, N$ such that $\forall\,\, n \ge N$, $|a_n - a| < \eps$. Take $m, n \ge N$, then \[ |a_n - a_m| \le |a_n - a| + |a_m - a| < 2\eps .\] \end{proof} \begin{theorem} Every Cauchy sequence is convergent. \end{theorem} \begin{proof} First we note that if $a_n$ is Cauchy, then it is \emph{bounded}. Take $\eps = 1$, $N = N(1)$ in the Cauchy property, then \[ |a_n - a_m| < 1, \quad \forall\,\, n, m \ge N(1) \] \[ |a_m| \le |a_m - a_N| + |a_N| < 1 + |a_N| \quad \forall\,\, m \ge N .\] Let $K = \max\{1 + |a_N|, |a_n|, n = 1, 2, \dots, N - 1\}$. Then $|a_n| \le K \,\,\forall\,\, n$. So by the Bolzano-Weierstrass theorem, $a_{n_j \to a}$. \myskip Claim: $a_n \to a$. \\ We now prove the claim: given $\eps > 0$, $\exists\,\, j_0$ such that $\forall\,\, j \ge j_0$ \[ |a_{n_j} - a| < \eps .\] Also, $\exists\,\, N(\eps)$ such that $|a_m - a_n| < \eps \,\,\forall\,\, m, n \ge N(\eps)$. Take $j$ such that $n_j \ge \max\{N(\eps), n_{j_0}\}$. Then if $n \ge N(\eps)$ \[ |a_n - a| \le \ub{|a_n - a_{n_j}|}_{< \eps} + \ub{|a_{n_j} - a|}_{< \eps} < 2\eps .\] \end{proof} \noindent Summary: in $\RR$ a sequence is convergent is and only if it is Cauchy. \\ ``old fashioned name'': the ``general principle of convergence''. \\ Useful property: since we do not need to know what the limit is. \subsubsection*{Series} \begin{definition*} $a_n \in \RR, \CC$. We say that $\sum_{j = 1}^\infty a_j$ converges to $S$ if the sequence of partial sums \[ S_N = \sum_{j = 1}^N a_j \to S \] as $N \to \infty$. We write \[ \sum_{j = 1}^\infty a_j = S .\] If $S_N$ does not converge, we say that $\sum_{j = 1}^\infty a_j$ \emph{diverges}. \end{definition*} \begin{remark*} Nay problem in series is really a problem about the sequence of partial sums. \end{remark*} \begin{lemma} \begin{enumerate}[(i)] \item If $\sum_{j = 1}^\infty a_j$ and $\sum_{j = 1}^\infty b_j$ converge, then so does \[ \sum_{j = 1}^\infty (\lambda a_j + \mu b_j) \] where $\lambda, \mu \in \CC$. \item Suppose $\exists\,\, N$ such that $a_j = b_j \,\,\forall\,\, j \ge N$ then either $\sum_{j = 1}^\infty a_j$ and $\sum_{j = 1}^\infty b_j$ both converge or they both diverge (initial terms do not matter). \end{enumerate} \end{lemma} \begin{proof} \begin{enumerate}[(i)] \item Exercise \item For $n \ge N$, \[ s_n = \sum_{j = 1}^n a_j = \sum_{j = 1}^{N - 1} a_j + \sum_{j = N}^n a_j \] \[ d_n = \sum_{j = 1}^n b_j = \sum_{j = 1}^{N - 1} b_j + \sum_{j = N}^n b_j \] \[ \implies s_n - d_n = \sum_{j = 1}^{N - 1} a_j - \sum_{j = 1}^{N - 1} b_j = \text{constant} \] So $s_n$ converges if and only if $d_n$ does. \end{enumerate} \end{proof}