% vim: tw=50 % 04/03/2022 11AM \begin{theorem} A bounded function $f : [a, b] \to \RR$ is Riemann integrable if and only if given $\eps > 0$, $\exists \mathcal{D}$ such that \[ S(f, \mathcal{D}) - s(f, \mathcal{D}) < \eps \] \end{theorem} \begin{proof} For every dissection $\mathcal{D}$ we have \[ 0 \le I^*(f) - I_*(f) \le S(f, \mathcal{D}) - s(f, \mathcal{D}) \] If the given condition holds, then \[ 0 \le I^*(f) - I_*(f) \le S(f, \mathcal{D}) - s(f, \mathcal{D}) < \eps \] for all $\eps > 0$ hence $I^*(f) = I_*(f)$. \\ Conversely, if $f$ is integrable, by definition of $\sup$ and $\inf$ there are partitions $\mathcal{D}_1$ and $\mathcal{D}_2$ such that \[ \int_a^b f - \frac{\eps}{2} = I_*(f) + \frac{\eps}{2} = \int_a^b f + \frac{\eps}{2} \] By Lemma 5.1 ($\mathcal{D}_1 \cup \mathcal{D}_2 \supseteq \mathcal{D}_1, \mathcal{D}_2$) \begin{align*} S(f, \mathcal{D}_1 \cup \mathcal{D}_2) - s(f, \mathcal{D}_1 \cup \mathcal{D}_2) &\le S(f, \mathcal{D}_2) - s(f, \mathcal{D}_1 \\ &< \int_a^b f + \frac{\eps}{2} - \int_a^b f + \frac{\eps}{2} \\ &= \eps \end{align*} \end{proof} \myskip We now use this criterion to show that monotone and continuous functions are \emph{integrable}. \begin{remark*} Monotone and continuous functions are bounded (theorem 2.6 for the case of continuous functions). \end{remark*} \begin{theorem} Let $f : [a, b] \to \RR$ be monotone. Then $f$ is integrable. \end{theorem} \begin{proof} Suppose $f$ is \emph{increasing} (same proof for $f$ decreasing). Then \[ \sup_{x \in [x_{j - 1}, x_j]} f(x) = f(x_j) \] \[ \inf_{x \in [x_{j - 1}, x_j]} f(x) = f(x_{j - 1}) \] Thus \[ S(f, \mathcal{D}) - s(f, \mathcal{D}) = \sum_{j - 1}^n (x_j - x_{j - 1})[f(x_j) - f(x_{j - 1})] \] Now choose \[ \mathcal{D} = \left\{ a, a + \frac{b - a}{n}, a + \frac{2(b - a)}{n}, \dots, b \right\} \] \[ x_j = a + \frac{(b - a)j}{n} \qquad 0 \le j \le n \] \[ S(f, \mathcal{D}) - s(f, \mathcal{D}) = \frac{(b - a)}{n} (f(b) - f(a)) \] Take $n$ large enough such that \[ \frac{(b - a)}{n} (f(b) - f(a)) < \eps \] and use Theorem 5.3. \end{proof} \subsubsection*{Continuous Functions} First we need an auxiliary lemma. \begin{lemma} $f : [a, b] \to \RR$ continuous. Then given $\eps > 0$, $\exists\,\, \delta > 0$ such that if $|x - y| < \delta \implies |f(x) - f(y)| < \eps$ (uniform continuity). The point is that $\delta$ works $\forall\,\, x, y$ as long as $|x - y| < \delta$. (in the definition of continuity of $f$ at, $\delta = f(x)$). \end{lemma} \begin{proof} Suppose the claim is false. Then $\exists\,\, \eps > 0$ such that $\forall\,\,\delta > 0$, we can find $x, y \in [a, b]$ such that $|x - y| < \delta$, but $|f(x) - f(y)| \ge \eps$. Take $\delta = \frac{1}{n}$, to get $x_n, y_n \in [a, b]$ with $|x_n - y_n| < \frac{1}{n}$, but \[ |f(x_n) - f(y_n)| \ge \eps \] By Bolzano-Weierstrass, $\exists \,\, x_{n_k} \to c \in [a, b]$ \[ |y_{n_k} - c| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - c| \to 0 \] so $y_{n_k} \to c$. But \[ |f(x_{n_k} - f(y_{n_k}) \ge \eps .\] Let $k \to \infty$, then by continuity of $f$ \[ |f(c) - f(c)| \ge \eps \implies 0 \ge \eps \] Absurd. \end{proof} \begin{theorem} Let $f : [a, b] \to \RR$ continuous. Then $f$ is Riemann integral. \end{theorem} \begin{proof} By 5.5, given $\eps > 0$, $\exists \,\, \delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \eps$. Let \[ \mathcal{D} = \left\{ a + \frac{(b - a)j}{n} : 0 \le j \le n \right\} \] Choose $n$ large enough such that $\frac{b - a}{n} < \delta$. Then for $x, y \in [x_{j - 1}, x_j]$ \[ |f(x) - f(y)| < \eps ,\] since \[ |x - y| \le |x_j - x_{j - 1}| = \frac{b - a}{n} < \delta \] Observe that \[ \max_{x \in [x_{j - 1}, x_j]} f(x) - \min_{x \in [x_{j - 1}, x_j]} f(x) = f(p_j) - f(q_j) \] $o_j, q_j \in [x_{j - 1}, x_j]$ (max and min are achieved due to continuity). Hence \begin{align*} S(f, \mathcal{D}) - s(f, \mathcal{D}) &= \sum_{j = 1}^n (x_j - x_{j - 1}) [f(p_j) - f(q_j)] \\ &< \eps(b - a) \end{align*} \end{proof}