% vim: tw=50 % 02/03/2022 11AM \subsubsection*{Hyperbolic Functions} (Hyperbolic sine and cosine) \begin{definition*} $\cosh z = \half (e^z + e^{-z})$, $\sinh z = \half (e^z - e^{-z})$. Alternatively, $\cosh z = \cos(iz)$, $\sinh z = -i\sin(iz)$. \end{definition*} \noindent One can also prove that $(\cosh z)' = \sinh z$ and $(\sinh z)' = \cosh z$. (This is left as an exercise). We also have \[ \cosh^2 z - \sinh^2 z = 1 \] The rest of the trigonometric functions ($\tan, \cot, \sec, \cosec$) are defined in the usual way. \newpage \section{Integration} $f : [a, b] \to \RR$ \emph{bounded}. (i.e. there exists $K$ such that $|f(x)| \le K\,\,\forall\,\, x \in [a, b]$) \begin{definition*} A dissection (or partition) $\mathcal{D}$ of $[a, b]$ is a finite subset of $[a, b]$ containing the endpoints $a$ and $b$. We write \[ \mathcal{D} = \{x_0, x_1, \dots, x_4\} \] with $a = x_0 < x_1 < \cdots < x_{n - 1} < x_ = b$. \end{definition*} \begin{definition*} We define the upper sum and lower sum associated with $\mathcal{D}$ by \[ S(f, \mathcal{D}) = \sum_{j = 1}^n (x_j - x_{j - 1}) \sup_{x \in [x_{j - 1}, x_j]} f(x) \tag{upper} \] \[ s(f, \mathcal{D}) = \sum_{j = 1}^n (x_j - x_{j - 1}) \inf_{x \in [x_{j - 1}, x_j]} f(x) \tag{lower} \] Clearly $s(f, \mathcal{D}) \le S(f, \mathcal{D})$ for all $\mathcal{D}$. \end{definition*} \begin{lemma} If $\mathcal{D}$ and $\mathcal{D}'$ are dissections with $\mathcal{D}' \supseteq \mathcal{D}$, then \[ S(f, \mathcal{D}) \ge S(f, \mathcal{D}') \ge s(f, \mathcal{D}') \ge s(f, \mathcal{D}) \] \end{lemma} \begin{proof} \[ S(f, \mathcal{D}') \ge s(f, \mathcal{D}') \] is obvious. Suppose $\mathcal{D}'$ contains an extra point than $\mathcal{D}$, let's say $y \in (x_{r - 1}, x_r)$. Then clearly \[ \sup_{x \in [x_{r - 1}, y]} f(x), \sup_{x \in [y, x_r]} \le \sup_{x \in [x_{r - 1}, x_r]} f(x) \] \[ \implies (x_r - x_{r - 1}) \sup_{x \in [x_{r - 1}, x_r]} f(x) \ge (y - x_{r - 1}) \sup_{x \in [x_{r - 1}, y]} f(x) + (x_r - y) \sup_{x \in [y, x_r]} f(x) \] \[ \implies S(f, \mathcal{D}) \ge S(f, \mathcal{D}') \] The same for $s$ and the same if $\mathcal{D}'$ has more extra points than $\mathcal{D}$. \end{proof} \begin{lemma} $\mathcal{D}_1, \mathcal{D}_2$ two arbitrary dissections. Then \[ S(f, \mathcal{D}_1) \ge S(f, \mathcal{D}_1 \cup \mathcal{D}_2) \ge s(f, \mathcal{D}_1 \cup \mathcal{D}_2) \ge s(f, \mathcal{D}_2) \] and in particular \[ S(f, \mathcal{D}_1) \ge s(f, \mathcal{D}_2) \] \end{lemma} \begin{proof} Take $\mathcal{D}' = \mathcal{D}_1 \cup \mathcal{D}_2 \supseteq \mathcal{D}_1, \mathcal{D}_2$ in the previous lemma. \end{proof} \begin{definition*} The \emph{upper integral} of $f$ is \[ I^*(f) = \inf_{\mathcal{D}} S(f, \mathcal{D}) \] (always exists!) The \emph{lower integral} of $f$ is \[ I_*(f) = \sup_{\mathcal{D}} s(f, \mathcal{D}) \] By Lemma 5.2, \[ I^*(f) \ge I_*(f) \] because \[ S(f, \mathcal{D}_1) \ge s(f, \mathcal{D}_2) \] \[ I^*(f) = \inf_{\mathcal{D}_1} S(f, \mathcal{D}_1) \ge s(f, \mathcal{D}_2) \] \[ I^*(f) \ge \sup_{\mathcal{D}_2} s(f, \mathcal{D}_2) = I_*(f) \] \end{definition*} \begin{definition*} A bounded function $f : [a, b] \to \RR$ is said to be \emph{Riemann integrable} (or just integrable) if \[ I^*(f) = I_*(f) \] and we set \[ \int_a^b f(x) \dd x = I^*(f) = I_*(f) = \int_a^b f \] \end{definition*} \begin{example*} \[ f(x) = \begin{cases} 1 & x \in \QQ \cap [0, 1] \\ 0 & x \not\in \QQ \cap [0, 1] \end{cases} \] $f : [0, 1] \to \RR$; $f$ is \emph{not} Riemann integrable: \[ \sup_{x \in [x_{j - 1}, x_j]} f(x) = 1, \qquad \inf_{x \in [x_{j - 1}, x_j]} f(x) = 0 \] Hence $s(f, \mathcal{D}) = 1$ and $s(f, \mathcal{D}) = 0$ for all $\mathcal{D}$. Hence $I^*(f) = 1$, but $I_*(f) = 0$. \end{example*}