% vim: tw=50 % 25/02/2022 11AM \noindent Now we restrict to $\RR$: \begin{theorem} \begin{enumerate}[(i)] \item $e : \RR \to \RR$ is everywhere differentiable and $e'(x) = e(x)$ \item $e(x + y) = e(x)e(y)$ \item $e(x) > 0$ for all $x \in \RR$ \item $e$ is strictly increasing \item $e(x) \to \infty$ as $x \to \infty$, $e(x) \to 0$ as $x \to -\infty$ \item $e : \RR \to (0, \infty)$ is a \emph{bijection}. \end{enumerate} \end{theorem} \begin{proof} \begin{enumerate}[(i)] \item Already done. \item Clearly \[ e(x) > 0 \qquad \forall x \ge 0 \] and $e(0) = 1$. Also \[ e(0) = e(x - x) = e(x)e(x) = 1 \implies e(-x) > 0 \] for all $x > 0$. \item Already done. \item $e'(x) = e(x) > 0$ so $e$ is strictly increasing. \item $e(x) > 1 + x$ for $x > 0$ so if $x \to \infty$, $e(x) \to \infty$. For $x > 0$ since \[ e(-x) = \frac{1}{e(x)} \] then $e(x) \to 0$ as $x \to -\infty$. \item Injectivity follows right away from being strictly increasing. Surjectivity: Take $y \in (0 \in \infty)$. From (v) there exist $a, b \in \RR$ such that \[ e(a) < y < e(b) \] so by the Intermediate Value Theorem there exists $x \in \RR$ such that $e(x) = y$. \end{enumerate} \end{proof} \begin{remark*} $e : (\RR, +) \to ((0, \infty), \times)$ is a \emph{group isomorphism}. \end{remark*} \noindent Since $e$ is a bijection we have an inverse: \[ l : (0, \infty) \to \RR \] \begin{theorem} \begin{enumerate}[(i)] \item $l : (0, \infty) \to \RR$ is a bijection and $l(e(x)) = x$ for all $x \in \RR$ and $r(l(t)) = t$ for all $t \in (0, \infty)$. \item $l$ is differentiable and $l'(t) = \frac{1}{t}$. \item $l(xy) = l(x) + l(y)$ for all $x, y \in (0, \infty)$. \end{enumerate} \end{theorem} \begin{proof} \begin{enumerate}[(i)] \item Obvious from the definition of $l$. \item Inverse rule (Theorem 3.6) $l$ is differentiable and \[ l'(t) = \frac{1}{e(l(t))} = \frac{1}{t} \] \item From IA Groups if $e$ is an isomorphism, so is its inverse. \end{enumerate} \end{proof} \myskip Now define for $\alpha \in \RR$ and $x > 0$: \[ r_\alpha (x) \stackrel{\text{def}}{=} e(\alpha l(x)) \] \begin{theorem} Suppose $x, y > 0$ and $\alpha, \beta \in \RR$. Then \begin{enumerate}[(i)] \item $r_\alpha(xy) = r_\alpha(x)r_\alpha(y)$ \item $r_{\alpha + \beta}(x) = r_\alpha(x)r_\beta(x)$ \item $r_\alpha(r_\beta(x)) = r_{\alpha\beta}(x)$ \item $r_1(x) = x$, $r_0(x) = 1$. \end{enumerate} \end{theorem} \begin{proof} \begin{enumerate}[(i)] \item \eqnoskip \begin{align*} r_\alpha(xy) &= e(\alpha l(xy)) \\ &= e(\alpha l(x) + \alpha l(y)) \\ &= e(\alpha l(x)) e(\alpha l(y)) \\ &= r_\alpha (x) r_\alpha (y) \end{align*} \item \eqnoskip \begin{align*} r_{\alpha + \beta}(x) &= e((\alpha + \beta)l(x)) \\ &= e(\alpha l(x)) e(\beta l(x)) \\ &= r_\alpha(x) r_\beta(x) \end{align*} \item \eqnoskip \begin{align*} r_\alpha(r_\beta(x)) &= r_\alpha(e(\beta l(x))) \\ &= e(\alpha le(\beta l(x))) \\ &= e(\alpha \beta l(x)) \\ r_{\alpha \beta}(x) \end{align*} \item $r_1(x) = e(l(x)) = x$, $r_0(x) = e(0) = 1$. \end{enumerate} \end{proof} \myskip For $n \ge 1$, $n \in \ZZ$ \[ r_n(x) = r_{1 + \cdots + 1}(x) = x \cdots x = x^n \] \[ r_1(x)r_{-1}(x) = r_0(x) = 1 \] \[ \implies r_{-1}(x) = \frac{1}{x} \] \[ r_{-n}(x) = \frac{1}{x^n} \] \[ (r_{\frac{1}{q}}(x))^q = r_1(x) = x \] ($q \in \ZZ$, $q \ge 1$) \[ \implies r_{\frac{1}{q}}(x) = x^{\frac{1}{q}} \] \[ r_{\frac{p}{q}}(x) = (r_{\frac{1}{q}}(x))^p = x^{\frac{p}{q}} \] Thus $r_\alpha(x)$ agrees with $x^\alpha$ when $a \in \QQ$ as previously defined. Now we give them names: \begin{align*} \exp(x) &= e(x) &&x \in \RR \\ \log x &= l(x) &&x \in (0, \infty) \\ x^\alpha &= r_\alpha(x) &&\alpha \in \RR, x \in (0, \infty) \end{align*} \[ e(x) = e(x \log e) = e_x(e) = e^x \] where \[ e = \stackrel{\text{def}}{=} = \sum_{n = 0}^\infty \frac{1}{n!} \] $\exp(x)$ is also a power, which we may as well write as $e^x$. Finally we compute \begin{align*} (x^\alpha)' &= (e^{\alpha \log x})' \\ &= e^{\alpha \log x} \frac{\alpha}{x} \\ &= \alpha x^{\alpha - 1} \end{align*} $f(x) = a^x$, $a > 0$ then \[ f'(x) = (e^{x \log a})' = e^{x \log a} \log a = a^x \log a \]