% vim: tw=50 % 23/02/2022 11AM \begin{theorem} $f(z) = \sum_{n = 0}^\infty a_n z^n$ has radius of convergence $R$. Then $f$ is differentiable at all points with $|z| < R$ with \[ f'(z) = \sum_{n = 1}^\infty na_n z^{n - 1} \] \end{theorem} \begin{proof}[(non-examinable)] We need two auxiliary lemmas: \begin{lemma} If $\sum_{n = 0}^\infty a_n z^n$ has radius of convergence $R$, so do \[ \sum_{n = 1}^\infty na_n z^{n - 1} \qquad \text{ and } \qquad \sum_{n = 2}^\infty n(n - 1)a_n z^{n - 2} \] \end{lemma} \begin{lemma} \begin{enumerate}[(i)] \item ${n \choose r} \le n(n - 1) {n - 2 \choose r - 2}$ for all $2 \le r \le n$ \item $|(z + h)^n - z^n - nhz^{n - 1}| \le n(n - 1)(|z| + |h|)^{n - 2}|h|^2$ for all $z \in \CC, h \in \CC$. \end{enumerate} \end{lemma} \begin{proof}[of 4.4] (after which we prove the lemmas) By Lemma 4.5 we may define \[ f'(Z) := \sum_{n = 1}^\infty na_n z^{n - 1} \qquad |z| < R \] Then we are required to prove that \[ \lim_{h \to 0} \frac{f(z + h) - f(z) - hf'(z)}{h} = 0 \] \begin{align*} I &:= \frac{f(z + h) - f(z) - hf'(z)}{h} \\ &= \frac{1}{h} \sum_{n = 0}^\infty a_n ((z + h)^n - z^n - hnz^{n - 1}) \\ |I| &= \frac{1}{|h|} \left| \lim_{N \to \infty} \sum_{n = 0}^N a_n ((z + h)^n - z^n - nhz^{n - 1}) \right| \\ &= \frac{1}{|h|} \lim_{N \to \infty} \left| \sum_{n = 0}^N a_n((z + h)^n - z^n - nhz^{n - 1}) \right| \\ &\le \frac{1}{|h|} \sum_{n = 0}^N |a_n||(z + h)^n - z^n - nhz^{n - 1}| \\ &\le \frac{1}{|h|} \sum_{n = 2}^\infty |a_n| n(n - 1)(|z| + |h|)^{n - 2} |h|^2 \\ &= |h| \sum_{n = 2}^\infty |a_n| n(n - 1)(|z| + |h|)^{n - 2} \end{align*} By Lemma 4.5, for $|h|$ small enough, \[ \sum_{n = 2}^\infty |a_n| n(n - 1)(|z| + |h|)^{n - 2} \] converges to $A(h)$, but $A(h) \le A(r)$ for $|h| < r$ and $|z| + r < R$. Hence \[ |I| \le |h| A(h) \le |h|A(r) \to 0 \] as $h \to 0$. \end{proof} \begin{proof}[of Lemma 4.5] Take $z$ and $R_0$ such that $0 < |z| < R_0 < R$. Since $a_n R_0^n \to 0$, $\exists \,\,K$ such that $|a_n R_0^n| \le K$, $\forall\,\,n \ge 0$. Thus \begin{align*} |na_nz^{n - 1}| &= \frac{n}{|z|} |a_n R_0^n| \left| \frac{z}{R_0} \right|^n \\ &\le \frac{Kn}{|z|} \left| \frac{z}{R_0} \right|^n \end{align*} But $\sum n \left| \frac{z}{R_0} \right|^n$ converges by the ratio test: \[ \frac{n + 1}{n} \left| \frac{z}{R_0} \right|^{n + 1} \left| \frac{R_0}{z} \right|^n = \frac{n + 1}{n} \left| \frac{z}{R_0} \right| \to \left| \frac{z}{R_0} \right| < 1 \] if $|z| > R$, the series diverges since $|a_n z^n|$ is unbounded hence so is $n|a_n z^n|$. The same proof applies to $\sum_{n = 2}^\infty n(n - 1) a_n z^{n - 2}$. \end{proof} \begin{proof}[of Lemma 4.6] \begin{enumerate}[(i)] \item \eqnoskip \[ \frac{{n \choose r}}{{n - 2 \choose r - 2}} = \frac{n!}{r!\cancel{(n - r)!}} \frac{(r - 2)!\cancel{(n - r)!}}{(n - 2)!} = \frac{n(n - 1)}{r(r - 1)} \le n(n - 1) \] \item \eqnoskip \[ (z + h)^n - z^n - nhz^{n - 1} = \sum_{r = 2}^n {n \choose r} z^{n - r} h^r \] Thus \begin{align*} |(z + h)^n - z^n - nhz^{n - 1}| &\le \sum_{r = 2}^n {n \choose r} |z|^{n - r} |h|^r \\ &\le n(n - 1) \left[ \sum_{r = 2}^n {n - 2 \choose r - 2} |z|^{n - r} |h|^{r - 2} \right] |h|^2 \\ &= n(n - 1) (|z| + |h|)^{n - 2} |h|^2 \end{align*} \end{enumerate} \end{proof} \end{proof} \subsection{The Standard Functions} (exponentials, logs, trigonometric, etc) \myskip We have already seen that \[ \sum_{n = 0}^\infty \frac{z^n}{n!} \] has $R = \infty$. Define $e : \CC \to \CC$ by \[ e(z) = \sum_{n = 0}^\infty \frac{z^n}{n!} \] Straight from Theorem 4.4, $e$ is differentiable and \[ \boxed{e'(z) = e(z)} .\] \begin{lemma*} If $F : \CC \to \CC$ has $F'(z) = 0$ for all $z \in \CC$, then $F$ is constant. \end{lemma*} \begin{proof} Consider $g(t) = F(tz)$. By chain rule: \[ g'(t) = F'(tz)z = 0 \] if $g(t) = u(t) + iv(t)$ then $g'(t) = u'(t) + iv'(t)$ so $u' = v' = 0$. Apply Corollary 3.5 to get the claim. \end{proof} \myskip Now let $a, b \in \CC$. Consider \[ F(z) = e(a + b - z)e(z) \] \[ F'(z) = -e(a + b - z)e(z) + e(a + b - z)e(z) = 0 \] so $F$ is constant. Use $z = b$ and $z = 0$ to deduce that \[ \boxed{e(a)e(b) = e(a + b)} \]