% vim: tw=50 % 21/02/2022 11AM \newpage \section{Power Series [4-5]} We want to look at \[ \sum_{n = 0}^\infty a_n z^n \tag{$*$} \] $z \in \CC$, $a_n \in \CC$. (The case $\sum_{n = 0}^\infty a_n(z - z_0)^n$, $z_0$ fixed, can be reduced to ($*$) by translation). \begin{lemma} If $\sum_{n = 0}^\infty a_n z_1^n$ converges and $|z| < |z_1|$, then $\sum_{n = 0}^\infty a_n z^n$ \emph{converges absolutely}. \end{lemma} \begin{proof} Since $\sum_{n = 0}^\infty a_n z_1^n$ converges, $a_n z_1^n \to 0$. Thus $\exists \,\, K > 0$ such that $|a_n z_1^n| \le K \,\,\forall\,\, n$. Then \begin{align*} |a_n z^n| &= |a_n z^n| \frac{|z_1^n|}{|z_1^n|} \\ &\le K \ub{\left| \frac{z}{z_1} \right|^n}_{< 1} \end{align*} Since the geometric series \[ \sum_{n = 0}^\infty \left| \frac{z}{z_1} \right|^n \] converges, the lemma follows by comparison. \end{proof} \myskip Using this lemma, we'll prove that every power series has a \emph{radius of convergence}. \begin{theorem} A power series either \begin{enumerate}[(1)] \item Converges absolutely for all $z$, or \item Converges absolutely for all $z$ inside a circle $|z| = R$ and diverges for all $z$ outside it, or \item Converges for $z = 0$ only. \end{enumerate} \end{theorem} \begin{definition*} The circle $|z| = R$ is called the circle of convergence and $R$ is the radius of convergence. In (1) we agree that $R = \infty$ and in (3) $R = 0$ (so $R \in [0, \infty]$). \end{definition*} \begin{proof} Let \[ S = \{x \in \RR : x \ge 0 \text{ and $\sum a_n x^n$ converges}\} \] Clearly $0 \in S$. By Lemma 4.1 if $x_1 \in S$, then $[0, x_1] \subset S$. If $S = [0, \infty)$ we have case (1). If not, there exists a finite supremum for $S$. Let $R = \sup S < \infty$, $R \ge 0$. If $R > 0$, we'll prove that if $|z_1| < R$, then $\sum a_n z_1^n$ converges absolutely. Pick $R_0$ such that \[ |z_1| < R_0 < R \] Then $R_0 \in S$ and the series converges for $z = R_0$. By Lemma 4.1, $\sum |a_n z_1^n|$ converges. Finally we show that if $|z_2| > R$, then the series does not converge for $z_2$. Pick $R < R_0 < |z_2|$. If $\sum a_n z_2^n$ converges then by Lemma 4.1 $\sum a_n R_0^n$ would be convergent, which contradicts that $R = \sup S$. \end{proof} \myskip The following lemma is useful for computing $R$: \begin{lemma} If $\left| \frac{a_{n + 1}}{a_n} \right| \to l$ as $n \to \infty$, then $R = \frac{1}{l}$. \end{lemma} \begin{proof} By the ratio test we have absolute convergence if \[ \lim \left| \frac{a_{n + 1}}{a_n} \frac{z^{n + 1}}{z^n} \right| < 1 \] so if $|z| < \frac{1}{l}$ we have absolute convergence. If $|z| > \frac{1}{l}$, the series diverges, again by ratio test. \end{proof} \begin{remark*} One can also use the root test to get that if $|a_n|^{1/n} \to l$, then $R = \frac{1}{l}$. \end{remark*} \subsubsection*{Examples} \begin{enumerate}[(1)] \item $\sum_{n = 0}^\infty \frac{z^n}{n!}$. \[ \left| \frac{a_{n + 1}}{a_n} \right| = \frac{n!}{(n + 1)!} = \frac{1}{n + 1} \to 0 = l \implies R = \infty \] \item Geometric series, $\sum_{n = 0}^\infty z^n$. $R = 1$. Note that at $|z| = 1$ we have divergence. \item $\sum_{n = 0}^\infty n! z^n$. \[ \left| \frac{a_{n + 1}}{a_n} \right| = \frac{(n + 1)!}{n!} = n + 1 \to \infty \implies R = 0 \] \item $\sum_{n = 1}^\infty \frac{z^n}{n}$, $R = 1$. (for $z = 1$ it diverges (harmonic series)) What happens for $|z| = 1$ and $z \neq 1$? Consider $\sum_{n = 1}^\infty \frac{z^n}{n} (1 - z)$. Then \begin{align*} s_N = \sum_{n = 1}^N \left( \frac{z^n - z^{n + 1}}{n} \right) \\ &= \sum_{n = 1}^N \frac{z^n}{n} - \sum_{n = 1}^N \frac{z^{n + 1}}{n} \\ &= \sum_{n = 1}^N \frac{z^n}{n} - \sum_{n = 2}^{N + 1} \frac{z^n}{n - 1} \\ &= z - \frac{z^{N + 1}}{N} + \sum_{n = 2}^N z^n \left( -\frac{1}{n(n - 1)} \right) \end{align*} if $|z| = 1$, then $\frac{z^{N + 1}}{N} \to 0$ as $N \to \infty$ and $\sum \frac{1}{n(n - 1)}$ converges, so $s_N$ \emph{converges}. \item $\sum_{n = 1}^\infty \frac{z^n}{n^2}$, $R = 1$ but converges for all $z$ with $|z| = 1$. \end{enumerate} \subsubsection*{Conclusion} In principle nothing can be said about $|z| = R$ and each case has to be discussed separately. Within the radius of convergence ``life is great''. Power series behave as if ``they were polynomials''.