% vim: tw=50 % 18/02/2022 11AM \myskip To get a Taylor series for $f$ one needs to show that $R_n \to 0$ as $n \to \infty$. This requires ``estimates'' and ``effort''. \begin{remark*} Theorems 3.8 and 3.9 work equally well in an interval $[a + h, a]$ with $h < 0$. \end{remark*} % \begin{example*} \noindent \textbf{Example.} The binomial \emph{series}: \[ f(x) = (1 + x)^r , \qquad r \in \QQ \] \begin{claim*} If $|x| < 1$, then \[ (1 + x)^r = 1 + {r \choose 1}x + \cdots + {r \choose n} x^n + \cdots \] where \[ {r \choose n} \stackrel{\text{def}}{=} \frac{r(r - 1) \cdots (r - n + 1)}{n!} \] \end{claim*} \begin{proof} Clearly \[ f^{(n)} (x) = r(r - 1) \cdots (r - n + 1) (1 + x)^{r - n} \] If $r \in \ZZ$, $r \ge 0$, then \[ f^{(r + 1)} \equiv 0 \] we have a polynomial of degree $r$. In general (Lagrange) \[ R_n = \frac{x^n}{n!} f^{(n)}(\theta x) = {r \choose n} \frac{x^n}{(1 + \theta x)^{n - r}} \] ($\theta \in (0, 1)$) \begin{note*} In principle, $\theta$ depends on both $x$ and $n$. \end{note*} For $0 < x < 1$, \[ (1 + \theta x)^{n - r} > 1 \] for $n > r$. Now observe that the series \[ \sum {r \choose n} x^n \] is absolutely convergent for $|x| < 1$. Indeed by the ratio test \[ a_n = {r \choose n} x^n \] \begin{align*} \implies \left| \frac{a_{n + 1}}{a_n} \right| &= \left| \frac{r(r - 1) \cdots (r - n + 1)(r - n)x^{n + 1}}{(n + 1)!} \right| \cdots \left| \frac{n!}{r(r - 1) \cdots (r - n + 1)x^n} \right| \\ &= \left| \frac{(r - n)x}{n + 1} \right| \to |x| < 1 \end{align*} In particular $a_n \to 0$ so ${r \choose n}x^n \to 0$. Hence for $n > r$ and $0 < x < 1$, we have \[ |R_n| \le |{r \choose n} x^n| = |a_n| \to 0 \] as $n \to \infty$. So the claim is proved in the range $0 \le x < 1$. \\ If $-1 < x < 0$ the argument above breaks, but Cauchy's form for $R_n$ works: \begin{align*} R_n &= \frac{(1 - \theta)^{n - 1} r(r - 1) \cdots (r - n + 1)(1 + \theta x)^{r - n} x^n}{(n - 1)!} \\ &= \ub{\frac{r(r - 1) \cdots (r - n + 1)}{(n - 1)!}}_{r {r - 1 \choose n - 1}} \frac{(1 - \theta)^{n - 1}}{(1 + \theta x)^{n - r}} x^n \\ &= r{r - 1 \choose n - 1} x^n (1 + \theta x)^{r - 1} \left( \ub{\frac{1 - \theta}{1 + \theta x}}_{\substack{< 1 \\ \forall x \in (-1, 1)}} \right)^{n - 1} \\ \implies |R_n| &\le \left| r{r - 1 \choose n - 1} x^n \right| (1 + \theta x)^{r - 1} \end{align*} Check: \[ (1 + \theta x)^{r - 1} \le \max\{1, (1 + x)^{r - 1}\} \] (do it!) Let \[ K_r = |r| \max\{1, (1 + x)^{r - 1}\} \] independent of $n$. \[ |R_n| \le K_r \left| {r - 1 \choose n - 1} x^n \right| \to 0 \] because $a_n \to 0$, thus $R_n \to 0$. \end{proof} % \end{example*} \subsubsection*{Remarks on Complex Differentiation} Formally for functions $f : E \subseteq \CC \to \CC$ we have properties for sums, products, chain rule etc. But it is \emph{much more restrictive} than differentiability on the real line. \begin{example*} $f : \CC \to \CC$, $f(z) = \ol{z}$ \begin{center} \includegraphics[width=0.6\linewidth] {images/0ea9f55ea16e11ec.png} \end{center} If \[ z_n = z + \frac{1}{n} \to z \] then \[ \frac{f(z_n) - f(z)}{z_n - z} = \frac{\ol{z} + \frac{1}{n} - \ol{z}}{z + \frac{1}{n} - z} = 1 \] but on the other hand if \[ z_n = z + \frac{i}{n} \to z \] then \[ \frac{f(z_n) - f(z)}{z_n - z} = \frac{\ol{z} - \frac{i}{n} - \ol{z}}{z + \frac{i}{n} - z} = -1 \] so \[ \lim_{w \to z} \frac{f(w) - f(z)}{w - z} \] does \emph{not exist}, so it is nowhere $\CC$-differentiable! \end{example*} \begin{note*} IB Complex Analysis explores the consequences of $\CC$-differentiability. \end{note*}